Clausal (Conjunctive Normal) Form and Resolution Techniques

Wednesday, 29 September 2004

William H. Hsu
Department of Computing and Information Sciences, KSU
http://www.kddresearch.org
http://www.cis.ksu.edu/~bhsu

Reading:
Chapter 9, Russell and Norvig
Handout, Nilsson and Genesereth
• **Today’s Reading**
 – Chapter 9, Russell and Norvig
 – Recommended references: Nilsson and Genesereth (excerpt of Chapter 5 online)

• **Thursday’s Reading:** Chapter 9, R&N

• **Previously:** Propositional and First-Order Logic
 – Two weeks ago
 • Logical agents: KR, inference, problem solving
 • Propositional logic: normal forms, sequent rules
 • Predicates and terms
 • First-order logic (FOL): quantifiers
 – Last week
 • FOL agents; frame problem; situation calculus, successor-state axioms
 • FOL KBs and forward search using sequent rules (sound but incomplete set)

• **Today:** Backward Inference
 – Resolution refutation (sound and complete proof procedure)
 – Computability (decidability) issues
Review: Automated Deduction by Forward Chaining

Operators are inference rules
States are sets of sentences
Goal test checks state to see if it contains query sentence

AI, UE, MP is a common inference pattern

Problem: branching factor huge, esp. for UE

Idea: find a substitution that makes the rule premise match some known facts
⇒ a single, more powerful inference rule

\[
\frac{\alpha, \alpha \Rightarrow \beta}{\beta}
\]

\[
\frac{\alpha \land \beta}{\alpha \land \beta}
\]

\[
\frac{\forall x \alpha}{\alpha(x/\tau)}
\]

- Modus Ponens
- And Introduction
- Universal Elimination

Adapted from slides by S. Russell, UC Berkeley
Conjunctive Normal (aka Clausal) Form [2]: Conversion (Nilsson) and Mnemonic

- Implications Out
- Negations Out
- Standardize Variables Apart
- Existentials Out (Skolemize)
- Universals Made Implicit
- Distribute And Over Or (i.e., Disjunctions In)
- Operators Out
- Rename Variables
- A Memonic for Star Trek: The Next Generation Fans

Captain Picard:

I’ll Notify Spock’s Eminent Underground Dissidents On Romulus

I’ll Notify Sarek’s Eminent Underground Descendant On Romulus
Offline Exercise:
Read-and-Explain Pairs

- For Class Participation (PS3, MP4)
- With Your Term Project Partner or Assigned Partner(s)

- Read: Chapter 9 (esp. 9.2, 9.5), Chapter 10 R&N 2e
- By Fri 08 Oct 2004, Fri 15 Oct 2004
Offline Exercise:
Read-and-Explain Pairs

- **For Class Participation (MP4)**
- **With Your Term Project Partner or Assigned Partner(s)**
 - Read your assigned sections (*take notes* if needed)
 - Group A: R&N Sections 9.3, 9.6 p. 284-286, 10.2 p. 302-303, 10.4
 - Group B: R&N Sections 9.7, 10.1, 10.2 p. 299-302, 10.3 p. 304-305, 10.5-10.8
 - Skim your partner’s sections
 - Meet with your partner (by e-mail, ICQ, IRC, or in person)
 - Explain your section
 - Key ideas – what’s important?
 - Important technical points
 - Discuss unclear points and *write them down*!
- **By Fri 08 Oct 2004**
 - Post
 - Confirmation to ksu-cis730-fall2004
 - **Muddiest point**: what is least clear in your understanding of your section?
 - Re-read your partner’s section as needed
Review:
Logic Programming (Prolog) Examples

Depth-first search from a start state X:

dfs(X) :- goal(X).
dfs(X) :- successor(X,S), dfs(S).

No need to loop over S: successor succeeds for each

Appending two lists to produce a third:

append([],Y,Y).
append([X|L],Y,[X|Z]) :- append(L,Y,Z).

query: append(A,B,[1,2]) ?
answers: A=[] B=[1,2]
 A=[1,2] B=[]
Completeness of Resolution

- Any Set of Sentences S is Representable in Clausal Form (Last Class)
- Assume S is Unsatisfiable, and in Clausal Form
- (By Herbrand’s Theorem) Some Set S' of Ground Instances is Unsatisfiable
- (By Ground Resolution Theorem) Resolution Derives \bot From S'
- (By Lifting Lemma) \exists A Resolution Proof $S \vdash \bot$

Figure 9.13 p. 301 R&N 2e
Decidability Revisited

- See: Section 9.7 Sidebar, p. 288 R&N
- Duals (Why?)

\[
\begin{align*}
L_{\text{VALID}} & \quad \overline{L_{\text{VALID}}} \\
L_{\text{SAT}} & \quad L_{\text{SAT}}
\end{align*}
\]

- Complexity Classes

- Understand: Reduction to \(L_d, L_H \)
Unification Procedure:
General Idea

A substitution σ unifies atomic sentences p and q if $p\sigma = q\sigma$

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Knows}(\text{John}, x)$</td>
<td>$\text{Knows}(\text{John}, \text{Jane})$</td>
<td>${x/\text{Jane}}$</td>
</tr>
<tr>
<td>$\text{Knows}(\text{John}, x)$</td>
<td>$\text{Knows}(y, \text{OJ})$</td>
<td>${x/\text{John}, y/\text{OJ}}$</td>
</tr>
<tr>
<td>$\text{Knows}(\text{John}, x)$</td>
<td>$\text{Knows}(y, \text{Mother}(y))$</td>
<td>${y/\text{John}, x/\text{Mother}(\text{John})}$</td>
</tr>
</tbody>
</table>

Idea: Unify rule premises with known facts, apply unifier to conclusion
E.g., if we know q and $\text{Knows}(\text{John}, x) \Rightarrow \text{Likes}(\text{John}, x)$
then we conclude
- $\text{Likes}(\text{John}, \text{Jane})$
- $\text{Likes}(\text{John}, \text{OJ})$
- $\text{Likes}(\text{John}, \text{Mother}(\text{John}))$

- **Most General Unifier** (Least-Commitment Substitution)
- See: Examples (p. 271 R&N, Nilsson and Genesereth)

Adapted from slides by S. Russell, UC Berkeley

CIS 730: Introduction to Artificial Intelligence
Logic Programming – Tricks of The Trade [1]: Dealing with Equality

- **Problem**
 - How to find appropriate inference rules for sentences with =?
 - Unification OK without it, but…
 - $A = B$ doesn’t force $P(A)$ and $P(B)$ to unify

- **Solutions**
 - **Demodulation**
 - *Generate substitution from equality term*
 - Additional sequent rule: p. 284 R&N
 - **Paramodulation**
 - More powerful
 - *Generate substitution from WFF containing equality constraint*
 - e.g., $(x = y) \lor P(x)$
 - Sequent rule sketch: p. 284 R&N
Logic Programming – Tricks of The Trade [2]: Resolution Strategies

- **Unit Preference**
 - Idea: Prefer inferences that produce shorter sentences (compare: Occam’s Razor)
 - How? Prefer unit clause (single-literal) resolvents
 - Reason: trying to produce a short sentence ($\perp \equiv \text{True} \Rightarrow \text{False}$)

- **Set of Support**
 - Idea: try to eliminate some potential resolutions (prevention as opposed to cure)
 - How? Maintain set SoS of resolution results and always take one resolvent from it
 - Caveat: need right choice for SoS to ensure completeness

- **Input Resolution and Linear Resolution**
 - Idea: “diagonal” proof (proof “list” instead of proof tree)
 - How? Every resolution combines some input sentence with some other sentence
 - Input sentence: in original KB or query
 - Generalize to linear resolution: include any ancestor in proof tree to be used

- **Subsumption**
 - Idea: eliminate sentences that sentences that are more specific than others
 - E.g., $P(x)$ subsumes $P(A)$
Logic Programming – Tricks of The Trade [3]:
Indexing Strategies

• Store and Fetch
 – Idea: store knowledge base in list of conjuncts
 – STORE: constant, i.e., $O(1)$ worst-case running time
 – FETCH: linear, i.e., $O(n)$ time

• Table Based
 – Idea: store KB in hash table (key: ground literals)
 – STORE: $O(1)$
 – FETCH: $O(1)$ expected case
 – Problems
 • Complex WFFs (other than negated atoms)
 • Variables
 – Solution: implicative normal form matching (Figure 10.1, p. 301 R&N)

• Tree-Based
 – What if there are many clauses for a predicate? (e.g., Brother (012-34-5678, x))
 – Type of combined indexing: joint primary key – predicate and argument symbols
 – May need background knowledge for semantic query optimization (SQO)
Logic Programming – Tricks of The Trade [4]: Compilation

- Intermediate Languages
 - Abstract machines
 - Warren Abstract Machine (WAM)
 - Java Virtual Machine (JVM)
 - Imperative intermediate representations (IRs)
 - C/C++
 - LISP / Scheme / SML – functional languages with imperative features
- Use in Genetic Programming (GLP): Later
- Beyond Scope of CIS 730: Compiling with Continuations (Appel)

Adapted from slides by S. Russell, UC Berkeley
Summary Points

• Previously: FOL, Forward and Backward Chaining, Resolution
• Today: More Resolution Theorem Proving, Prolog, and Unification
 – Review: resolution inference rule
 • Single-resolvent form
 • General form
 – Application to logic programming
 – Review: decidability properties
 • FOL-SAT
 • FOL-NOT-SAT (language of unsatisfiable sentences; complement of FOL-SAT)
 • FOL-VALID
 • FOL-NOT-VALID
 – Unification
• Next Week
 – Intro to classical planning
 – Inference as basis of planning
Terminology

- Properties of Knowledge Bases (KBs)
 - Satisfiability and validity
 - Entailment and provability
- Properties of Proof Systems
 - Soundness and completeness
 - Decidability, semi-decidability, undecidability
- Resolution
- Refutation
- Satisfiability, Validity
- Unification
 - Occurs check
 - Most General Unifier
- Prolog: Tricks of The Trade
 - Demodulation, paramodulation
 - Unit resolution, set of support, input / linear resolution, subsumption
 - Indexing (table-based, tree-based)