CSP Search Concluded: Arc Consistency (AC-3)
Intro to Games and
Game Tree Search

William H. Hsu
Department of Computing and Information Sciences, KSU

KSOL course page: http://snipurl.com/v9v3
Course web site: http://www.kddresearch.org/Courses/CIS730
Instructor home page: http://www.cis.ksu.edu/~bhsu

Reading for Next Class:
Sections 6.4 – 6.8, p. 171 – 185, Russell & Norvig 2nd edition

Outside references:
CSP examples, M. Hauskrecht (U. Pittsburgh) – http://tr.im/zdG6
Notes on CSP, R. Barták (Charles U., Prague) – http://tr.im/zdGE

Lecture Outline

- Reading for Next Class: 6.4 – 6.8 (p. 171 – 185), R&N 2e
- Last Class: Sections 5.1 – 5.3 on Constraint Satisfaction Problems
 - CSPs: definition, examples
 - Heuristics for variable selection, value selection
 - Two algorithms: backtracking search, “one-step” forward checking
- Today: Rest of CSP, 5.4-5.5, p. 151-158; Games Intro, 6.1-6.3, p. 161-174
 - Third algorithm: constraint propagation by arc consistency (AC-3)
 - Scaling up to NP-hard problems
- This Week: CSP and Game Tree Search
 - Rudiments of game theory
 - Zero-sum games vs. cooperative games
 - Perfect information vs. imperfect information
 - Minimax
 - Alpha-beta (α - β) pruning
 - Randomness and expectiminimax
- Next: From Heuristics to General Knowledge Representation
Farmer, Fox, Goose, & Grain

State Space: Review

F = Farmer X = fox G = Goose
N = grain ~ = River

Adapted from slide © 2008 B. R. Maxim, Univ. of Michigan – Dearborn
CIS 479/579 Artificial Intelligence http://tr.im/zdhV
CSPs: Review

Standard search problem: state is a “black box”—any old data structure that supports goal test, eval, successor

CSP:
state is defined by variables X_i with values from domain D,
goal test is a set of constraints specifying allowable combinations of values for subsets of variables

Simple example of a formal representation language
Allows useful general-purpose algorithms with more power than standard search algorithms

Map Coloring Example: Review

Solutions are assignments satisfying all constraints, e.g.,
\{WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green}\}
Algorithm 1 — Backtracking Search: Review

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING([], csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure
if assignment is complete then return assignment
var — SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment given CONSTRAINTS[csp] then
 add {var = value} to assignment
 result — RECURSIVE-BACKTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var = value} from assignment
return failure

Backtracking Example: Review
Variable and Value Selection:

Review
- **MRV**
 - Minimum remaining values (MRV): choose the variable with the fewest legal values.
 - Tie-breaker among MRV variables.
 - Degree heuristic: choose the variable with the most constraints on remaining variables.

LCV
- Value selection (for a given variable).
- Given a variable, choose the least Constraining value.
- The one that rules out the fewest values in the remaining variables.

Combining these heuristics makes 1000 queens feasible.

Based on slides © 2004 S. Russell & P. Norvig. Reused with permission.

Value Propagation:

Constraint Prop Without Lookahead

- **Constraint propagation**
 - Value propagation. Infers:
 - equations from the set of equations defining the partial assignment, and a constraint

No equations/disequations are inferred

No equations/disequations are inferred

© 2005 M. Hauskrecht, University of Pittsburgh
CS 2710 Foundations of Artificial Intelligence
http://www.cs.pitt.edu/~milos/courses/cs2710/
Algorithm 2 — Forward Checking: Review

Idea: Keep track of remaining legal values for unassigned variables. Terminate search when any variable has no legal values.

<table>
<thead>
<tr>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints locally.

Forward Checking
With “One-Step” Constraint Prop

- Constraint propagation

 Forward checking: Infers:
 - disequations from a set of equations defining the partial assignment, and a constraint
 - Equations through the exhaustion of alternatives

Invalid assignment

Based on slides © 2004 S. Russell & P. Norvig. Reused with permission.

© 2005 M. Hauskrecht, University of Pittsburgh
CS 2710 Foundations of Artificial Intelligence
http://www.cs.pitt.edu/~milos/courses/cs2710/
Algorithm 3 — Arc Consistency [1]

Simplest form of propagation makes each arc consistent

\[X \rightarrow Y \text{ is consistent iff} \]

for every value \(x \) of \(X \) there is some allowed \(y \)

If \(X \) loses a value, neighbors of \(X \) need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

Algorithm 3 — Arc Consistency [2]

AC-3 Definition

function AC-3(\(\sigma \)) returns the CSP, possibly with reduced domains
inputs: \(\sigma \), a binary CSP with variables \(\{X_1, X_2, \ldots, X_n\} \)
local variables: queue, a queue of arcs, initially all the arcs in \(\sigma \)

while queue is not empty do

\((X_i, X_j) \leftarrow \text{REMOVE-FIRST}(\text{queue}) \)

if REMOVE-INCONSISTENT-VALUES(\(X_i, X_j \)) then

for each \(X_k \) in NEIGHBORS(\(X_i \)) do

add \((X_k, X_i) \) to queue

end

function REMOVE-INCONSISTENT-VALUES(\(X_i, X_j \)) returns true if succeeds
removed — false

for each \(x \) in Domain[\(X_i \)] do

if no value \(y \) in Domain[\(X_j \)] allows \((x,y) \) to satisfy the constraint \(X_i \leftarrow X_j \)

then delete \(x \) from Domain[\(X_i \)]; removed — true

return removed

\(O(n^2d^3) \), can be reduced to \(O(n^2d^3) \) (but detecting all is NP-hard)

Forward Checking
With Full Arc Consistency

- Constraint propagation
 Arc consistency. Infers:
 - disequations from the set of equations and disequations defining the partial assignment, and a constraint
 - equations through the exhaustion of alternatives

© 2005 M. Hauskrecht, University of Pittsburgh
CS 2710 Foundations of Artificial Intelligence
http://www.cs.pitt.edu/~milos/courses/cs2710/

Intro to Games:
Outline

- Games
- Perfect play
 - minimax decisions
 - α-β pruning
- Resource limits and approximate evaluation
- Games of chance
- Games of imperfect information

Games versus Search

“Unpredictable” opponent \Rightarrow solution is a strategy specifying a move for every possible opponent reply

Time limits \Rightarrow unlikely to find goal, must approximate

Plan of attack:

- Computer considers possible lines of play (Babbage, 1846)
- Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)
- Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948; Shannon, 1950)
- First chess program (Turing, 1951)
- Machine learning to improve evaluation accuracy (Samuel, 1952–57)
- Pruning to allow deeper search (McCarthy, 1956)

Types of Games

<table>
<thead>
<tr>
<th>Deterministic</th>
<th>Chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>chess, checkers, go, othello</td>
<td>backgammon, monopoly</td>
</tr>
<tr>
<td>battleship, blind tic-tac-toe</td>
<td>bridge, poker, scrabble, nuclear war</td>
</tr>
</tbody>
</table>

Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.
Game Tree:

2-Player, Deterministic, Turns

Minimax [1]: Example

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value

= best achievable payoff against best play

E.g., 2-ply game:
Minimax [2]: Algorithm

```python
function Minimax-Decision(state) returns an action
    inputs: state, current state in game
    return the a in ACTIONS(state) maximizing Min-Value(Result(a, state))

function Max-Value(state) returns a utility value
    if TERMINAL-TEST(state) then return UTILITY(state)
    v ← −∞
    for a, s in SUCCESSORS(state) do v ← MAX(v, Min-Value(s))
    return v

function Min-Value(state) returns a utility value
    if TERMINAL-TEST(state) then return UTILITY(state)
    v ← ∞
    for a, s in SUCCESSORS(state) do v ← MIN(v, Max-Value(s))
    return v
```

Minimax [3]: Properties

- **Complete??**
 Yes, if tree is finite (chess has specific rules for this)

- **Optimal??**
 Yes, against an optimal opponent. Otherwise??

- **Time complexity??** $O(b^m)$

- **Space complexity??** $O(bm)$ (depth-first exploration)

For chess, $b \approx 35$, $m \approx 100$ for “reasonable” games
 \[\Rightarrow \text{exact solution completely infeasible} \]

But do we need to explore every path?
Figure 6.5 p. 168 R&N 2e

What are \(\alpha, \beta \) values here?

Alpha-Beta (\(\alpha - \beta \)) Pruning [1]: Example

Adapted from slides © 2004 S. Russell & P. Norvig. Reused with permission.

Alpha-Beta (\(\alpha - \beta \)) Pruning [2]: Algorithm

Adapted from slides © 2004 S. Russell & P. Norvig. Reused with permission.
Alpha-Beta (α-β) Pruning [3]: Properties

Pruning does not affect final result.
Good move ordering improves effectiveness of pruning.
With "perfect ordering," time complexity = $O(b^{m/2})$.

- **Depth-limited**
- **Iterative deepening**
- **Memory-bounded**

A simple example of the value of reasoning about which computations are relevant (a form of metareasoning).
Unfortunately, 35^{50} is still impossible!

Can We Do Better?

Idea: Adapt Resource-Bounded Heuristic Search Techniques

- Depth-limited
- Iterative deepening
- Memory-bounded

Static Evaluation Functions

For chess, typically linear weighted sum of features:

$$Eval(s) = w_1f_1(s) + w_2f_2(s) + \ldots + w_nf_n(s)$$

- e.g., $w_1 = 9$ with
 - $f_1(s) = \text{(number of white queens)} - \text{(number of black queens)}$, etc.
CSP Techniques
- Variable selection heuristic: Minimum Remaining Values (MRV)
- Value selection heuristic: Least Constraining Value (LCV)
- Constraint satisfaction search algorithms: using variable and value selection

Detailed CSP Example: 3-Coloring of Planar Graph

Algorithms
- Value propagation and backtracking
- Forward checking: simple constraint propagation, arc consistency (AC-3)

Games and Game Theory
- Single-player vs. multi-player vs. two-player
- Cooperative vs. competitive (esp. zero sum)
- Uncertainty
 - Imperfect information vs. perfect information
 - Deterministic vs. games with element of chance

Game Tree Search
- Minimax, alpha-beta (α - β) pruning
- Static evaluation functions