Lecture 9 of 42

Game Tree Search: Minimax and Alpha-Beta (α - β) Pruning

William H. Hsu
Department of Computing and Information Sciences, KSU

KSOL course page: http://snipurl.com/v9v3
Course web site: http://www.kddresearch.org/Courses/CIS730
Instructor home page: http://www.cis.ksu.edu/~bhsu

Reading for Next Class:
Section 7.1 – 7.4, p. 194 - 210, Russell & Norvig 2nd edition

Outside reference:
University of Alberta GAMES page – http://www.cs.uaiaber.ca/~games/

Lecture Outline

- Reading for Next Class: 7.1 – 7.4 (p. 194 – 210), R&N 2e
- Last Class, 5.4-5.5, p. 151-158; Games Intro, 6.1-6.3, p. 161-174
 - Third CSP algorithm: constraint propagation by arc consistency (AC-3)
 - “One-step” vs. “all-steps” lookahead
- Today: Game Tree Search
 - Rudiments of game theory
 - Minimax with alpha-beta (α - β) pruning
 - Perfect information vs. imperfect information
- Need for Expectiminimax
 - Games of chance: dealing with nondeterminism
 - Imperfect information
- Game Analysis
 - Quiescence
 - Horizon effect
 - “Averaging over clairvoyance” and when/why it fails
- Next Class: From Search to Knowledge Representation
Types of Games: Review

<table>
<thead>
<tr>
<th>Deterministic</th>
<th>Chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>perfect information</td>
<td>backgammon, monopoly</td>
</tr>
<tr>
<td>imperfect information</td>
<td>battleship, blind tic-tac-toe, bridge, poker, scrabble, nuclear war</td>
</tr>
</tbody>
</table>

Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

Alpha-Beta (α - β) Pruning - Example: Review

What are α, β values here?

![Diagram](http://tr.im/ze90)

Figure 6.5 p. 168 R&N 2e

Adapted from slides © 2004 S. Russell & P. Norvig. Reused with permission.
Minimax with α-β Pruning — Algorithm: Review

function **Alpha-Beta-Decision**(state) returns an action
return the a in ACTIONS(state) maximizing MIN-VALUE(Result(a, state))

function **Max-Value**(state, α, β) returns a utility value
inputs: state, current state in game
α, the value of the best alternative for MAX along the path to state
β, the value of the best alternative for MIN along the path to state
if TERMINAL-TEST(state) then return UTILITY(state)
v ← −∞
for a, s in SUCCESSORS(state) do
v ← MAX(v, MIN-VALUE(s, α, β))
if v ≥ β then return v
α ← MAX(α, v)
return v

function **Min-Value**(state, α, β) returns a utility value
same as Max-Value but with roles of α, β reversed

Why Is It Called α-β?

α is the best value (to MAX) found so far off the current path
If V is worse than α, MAX will avoid it ⇒ prune that branch
Define β similarly for MIN

Figure 6.6 p. 169 R&N 2e

Depth Limit Rationale: Review

Pruning does not affect final result
Good move ordering improves effectiveness of pruning
With "perfect ordering," time complexity = \(O(t^{m/2}) \)
\(\Rightarrow \) doubles solvable depth
A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)
Unfortunately, \(35^{50} \) is still impossible!

- Can We Do Better?
- Idea: Adapt Resource-Bounded Heuristic Search Techniques
 - Depth-limited
 - Iterative deepening
 - Memory-bounded

Resource Limits and Limited-Ply Search

Standard approach:
- Use \textsc{Cutoff-Test} instead of \textsc{Terminal-Test}
 - e.g., depth limit (perhaps add quiescence search)
- Use \textsc{Eval} instead of \textsc{Utility}
 - i.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore \(10^4 \) nodes/second
\(\Rightarrow 10^4 \) nodes per move \(\approx 35^{8/2} \)
\(\Rightarrow \alpha\beta \) reaches depth 8 \(\Rightarrow \) pretty good chess program
Static Evaluation Functions: Review

For chess, typically linear weighted sum of features

\[\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

e.g., \(w_1 = 9 \) with

\[f_1(s) = (\text{number of white queens}) - (\text{number of black queens}) \]

Figure 6.8 p. 173 R&N 2e

Digression: Exact Values Don’t Matter

MAX

MIN

Behaviour is preserved under any monotonic transformation of \text{Eval}.

Only the order matters:

payoff in deterministic games acts as an ordinal utility function

Issues

- **Quiescence**
 - Play has “settled down”
 - Evaluation function unlikely to exhibit wild swings in value in near future
- **Horizon effect**
 - “Stalling for time”
 - Postpones inevitable win or damaging move by opponent
 - See: Figure 6.9, p. 175 R&N 2

Solutions?

- Quiescence search: expand non-quiescent positions further
- No general solution to horizon problem at present

Deterministic Games in Practice

Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.

Othello: human champions refuse to compete against computers, who are too good.

Go: human champions refuse to compete against computers, who are too bad. In go, $b > 300$, so most programs use pattern knowledge bases to suggest plausible moves.
Nondeterministic Games: Backgammon

![Backgammon Board]

Nondeterministic Games in General

In nondeterministic games, chance introduced by dice, card-shuffling

Simplified example with coin-flipping:

```
MAX

CHANCE

MIN
```

Expectiminimax:

Algorithm for Nondeterministic Games

Expectiminimax gives perfect play
Just like Minimax, except we must also handle chance nodes:

... if state is a MAX node then
 return the highest Expectiminimax-Value of Successors(state)
if state is a MIN node then
 return the lowest Expectiminimax-Value of Successors(state)
if state is a chance node then
 return average of Expectiminimax-Value of Successors(state)
...

Nondeterministic Games in Practice

Dice rolls increase b: 21 possible rolls with 2 dice
Backgammon \approx 20 legal moves (can be 6,000 with 1-1 roll)

$$depth = 4 = 20 \times (21 \times 20)^3 \approx 1.2 \times 10^9$$

As depth increases, probability of reaching a given node shrinks
\Rightarrow value of lookahead is diminished

$\alpha-\beta$ pruning is much less effective

TGDAMMON uses depth-2 search + very good EVAL
\approx world-champion level
Digression: Exact Values Do Matter

Behaviour is preserved only by positive linear transformation of \(\text{EVAL} \)
Hence \(\text{EVAL} \) should be proportional to the expected payoff

Figure 6.12 p. 178 R&N 2e

Games of Imperfect Information [1]: Solution Approach

E.g., card games, where opponent’s initial cards are unknown
Typically we can calculate a probability for each possible deal
Seems just like having one big dice roll at the beginning of the game
Idea: compute the minimax value of each action in each deal,
then choose the action with highest expected value over all deals
Special case: if an action is optimal for all deals, it’s optimal.

GB, current best bridge program, approximates this idea by
1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average

Games of Imperfect Information [2]: Example

Four-card bridge/whist/hearts hand, MAX to play first

```
MAX 0 0 0 0
M   N   N   N
H  9 9 9 9
  9 9 9 9
  9 9 9 9
N  9 9 9 9
 M 9 9 9 9
 M 9 9 9 9
 M 9 9 9 9
```

Similar to example on p. 179 R&N 2e

Commonsense Example [1]: Statement

Day 1
Road A leads to a small heap of gold pieces
Road B leads to a fork:
 take the left fork and you'll find a mound of jewels;
 take the right fork and you'll be run over by a bus.

Day 2
Road A leads to a small heap of gold pieces
Road B leads to a fork:
 take the left fork and you'll be run over by a bus;
 take the right fork and you'll find a mound of jewels.

Day 3
Road A leads to a small heap of gold pieces
Road B leads to a fork:
 guess correctly and you'll find a mound of jewels;
 guess incorrectly and you'll be run over by a bus.
Commonsense Example [2]: Proper Analysis

* Intuition that the value of an action is the average of its values in all actual states is **WRONG**

With partial observability, value of an action depends on the information state or belief state the agent is in.

Can generate and search a tree of information states.

Leads to rational behaviors such as:

- Acting to obtain information
- Signalling to one's partner
- Acting randomly to minimize information disclosure

Games: Summary

Games are fun to work on! (and dangerous)

- They illustrate several important points about AI
 - perfection is unattainable ⇒ must approximate
 - good idea to think about what to think about
 - uncertainty constrains the assignment of values to states
 - optimal decisions depend on information state, not real state

Games are to AI as grand prix racing is to automobile design.
TERMINOLOGY

- Game Tree Search
 - Zero-sum games
 - 2-player vs. n-player
- Minimax Algorithm: Alternates between MAX and MIN Players
- Alpha-Beta Pruning (α-β Pruning)
 - \(\alpha \): best value to MAX found so far off current path (\(\nu \) worse than \(\alpha \) ⇒ prune)
 - \(\beta \): best value to MIN found so far off current path
- Resource-Bounded Minimax
 - Static evaluation function
 - Limited-ply search (compare: depth-limited search aka DLS)
 - Iterative deepening search (compare: ID-DFS, IDA*)
- Expectiminimax
 - Based on expectation
 - Games with chance
 - Games with imperfect information

SUMMARY POINTS

- Game Theory Continued
 - Game tree representation
 - Perfect play: Minimax algorithm, speedup with alpha-beta (α-β) pruning
 - Resource-bounded Minimax: static evaluation functions, iterative deepening
 - Emphasis: two-player (with exceptions), zero-sum, perfect info
- Alpha-Beta Pruning (α-β Pruning)
- Resource-Bounded Minimax
 - Need for static evaluation (compare: heuristics)
 - Limited-ply search (compare: depth-limited search aka DLS)
 - Iterative deepening search (compare: ID-DFS, IDA*)
- Expectiminimax
 - Based on expectation
 - Games with chance
 - Games with imperfect information
- Significance of Games to AI
 - Understanding representation, reasoning, and learning
 - Finding out what approximations, refinements, abstractions work