Lecture 5 of 42

Decision Trees,
Occam’s Razor, and Overfitting

Friday, 01 February 2008

William H. Hsu
Department of Computing and Information Sciences, KSU
http://www.cis.ksu.edu/~bhsu

Readings:
Chapter 3.6-3.8, Mitchell

Lecture Outline

• Read Sections 3.6-3.8, Mitchell
• Occam’s Razor and Decision Trees
 – Preference biases versus language biases
 – Two issues regarding Occam algorithms
 • Is Occam’s Razor well defined?
 • Why prefer smaller trees?
• Overfitting (aka Overtraining)
 – Problem: fitting training data too closely
 • Small-sample statistics
 • General definition of overfitting
 – Overfitting prevention, avoidance, and recovery techniques
 • Prevention: attribute subset selection
 • Avoidance: cross-validation
 • Detection and recovery: post-pruning
• Other Ways to Make Decision Tree Induction More Robust
Occam’s Razor and Decision Trees: A Preference Bias

- Preference Biases versus Language Biases
 - Preference bias
 - Captured ("encoded") in learning algorithm
 - Compare: search heuristic
 - Language bias
 - Captured ("encoded") in knowledge (hypothesis) representation
 - Compare: restriction of search space
 - aka restriction bias
- Occam’s Razor: Argument in Favor
 - Fewer short hypotheses than long hypotheses
 - e.g., half as many bit strings of length \(n \) as of length \(n + 1, n \geq 0 \)
 - Short hypothesis that fits data less likely to be coincidence
 - Long hypothesis (e.g., tree with 200 nodes, \(|D| = 100\)) could be coincidence
 - Resulting justification / tradeoff
 - All other things being equal, complex models tend not to generalize as well
 - Assume more model flexibility (specificity) won’t be needed later

Occam’s Razor and Decision Trees: Two Issues

- Occam’s Razor: Arguments Opposed
 - \(size(h) \) based on \(H \) - circular definition?
 - Objections to the preference bias: “fewer” not a justification
- Is Occam’s Razor Well Defined?
 - Internal knowledge representation (KR) defines which \(h \) are “short” - arbitrary?
 - e.g., single “(Sunny \& Normal-Humidity) \lor Overcast \lor (Rain \& Light-Wind)” test
 - Answer: \(L \) fixed; imagine that biases tend to evolve quickly, algorithms slowly
- Why Short Hypotheses Rather Than Any Other Small \(H \)?
 - There are many ways to define small sets of hypotheses
 - For any size limit expressed by preference bias, some specification \(S \) restricts \(size(h) \) to that limit (i.e., “accept trees that meet criterion \(S \)”)
 - e.g., trees with a prime number of nodes that use attributes starting with “Z”
 - Why small trees and not trees that (for example) test \(A_1, A_2, ..., A_{11} \) in order?
 - What’s so special about small \(H \) based on \(size(h) \)?
 - Answer: stay tuned, more on this in Chapter 6, Mitchell
Overfitting in Decision Trees: An Example

- Recall: Induced Tree

![Decision Tree Diagram]

- Noisy Training Example
 - Example 15: <Sunny, Hot, Normal, Strong, ->
 - Example is noisy because the correct label is +
 - Previously constructed tree misclassifies it
 - How shall the DT be revised (incremental learning)?
 - New hypothesis $h' = T'$ is expected to perform worse than $h = T$

Overfitting in Inductive Learning

- Definition
 - Hypothesis h overfits training data set D if \exists an alternative hypothesis h' such that $\text{error}_D(h) < \text{error}_D(h')$ but $\text{error}_{\text{test}}(h) > \text{error}_{\text{test}}(h')$
 - Causes: sample too small (decisions based on too little data); noise; coincidence

- How Can We Combat Overfitting?
 - Analogy with computer virus infection, process deadlock
 - Prevention
 - Addressing the problem “before it happens”
 - Select attributes that are relevant (i.e., will be useful in the model)
 - Caveat: chicken-egg problem; requires some predictive measure of relevance
 - Avoidance
 - Sidestepping the problem just when it is about to happen
 - Holding out a test set, stopping when h starts to do worse on it
 - Detection and Recovery
 - Letting the problem happen, detecting when it does, recovering afterward
 - Build model, remove (prune) elements that contribute to overfitting
Decision Tree Learning: Overfitting Prevention and Avoidance

- How Can We Combat Overfitting?
 - Prevention (more on this later)
 - Select attributes that are relevant (i.e., will be useful in the DT)
 - Predictive measure of relevance: attribute filter or subset selection wrapper
 - Avoidance
 - Holding out a validation set, stopping when \(h = T \) starts to do worse on it

- How to Select “Best” Model (Tree)
 - Measure performance over training data and separate validation set
 - Minimum Description Length (MDL):
 - minimize \(\text{size}(h = T) + \text{size}(\text{misclassifications}(h = T)) \)

CIS 732: Machine Learning and Pattern Recognition

Decision Tree Learning: Overfitting Avoidance and Recovery

- Today: Two Basic Approaches
 - Pre-pruning (avoidance): stop growing tree at some point during construction when it is determined that there is not enough data to make reliable choices
 - Post-pruning (recovery): grow the full tree and then remove nodes that seem not to have sufficient evidence

- Methods for Evaluating Subtrees to Prune
 - Cross-validation: reserve hold-out set to evaluate utility of \(T \) (more in Chapter 4)
 - Statistical testing: test whether observed regularity can be dismissed as likely to have occurred by chance (more in Chapter 5)
 - Minimum Description Length (MDL)
 - Additional complexity of hypothesis \(T \) greater than that of remembering exceptions?
 - Tradeoff: coding model versus coding residual error
Reduced-Error Pruning

• Post-Pruning, Cross-Validation Approach
• Split Data into Training and Validation Sets
• Function Prune(T, node)
 – Remove the subtree rooted at node
 – Make node a leaf (with majority label of associated examples)
• Algorithm Reduced-Error-Pruning (D)
 – Partition D into D_train (training / “growing”), D_valid (validation / “pruning”)
 – Build complete tree T using ID3 on D_train
 – UNTIL accuracy on D_valid decreases DO
 FOR each non-leaf node candidate in T
 Temp[candidate] ← Prune (T, candidate)
 Accuracy[candidate] ← Test (Temp[candidate], D_valid)
 T ← T’ ∈ Temp with best value of Accuracy (best increase; greedy)
 RETURN (pruned) T

Effect of Reduced-Error Pruning

• Reduction of Test Error by Reduced-Error Pruning
 – Test error reduction achieved by pruning nodes
 – NB: here, D_valid is different from both D_train and D_test
• Pros and Cons
 – Pro: Produces smallest version of most accurate T’ (subtree of T)
 – Con: Uses less data to construct T
 • Can afford to hold out D_valid?
 • If not (data is too limited), may make error worse (insufficient D_train)
Rule Post-Pruning

- Frequently Used Method
 - Popular anti-overfitting method; perhaps most popular pruning method
 - Variant used in C4.5, an outgrowth of ID3
- Algorithm Rule-Post-Pruning (D)
 - Infer T from D (using ID3) - grow until D is fit as well as possible (allow overfitting)
 - Convert T into equivalent set of rules (one for each root-to-leaf path)
 - Prune (generalize) each rule independently by deleting any preconditions whose deletion improves its estimated accuracy
 - Sort the pruned rules
 - Sort by their estimated accuracy
 - Apply them in sequence on D_{test}

Converting a Decision Tree into Rules

- Rule Syntax
 - LHS: precondition (conjunctive formula over attribute equality tests)
 - RHS: class label
- Example
 - IF (Outlook = Sunny) ∧ (Humidity = High) THEN PlayTennis = No
 - IF (Outlook = Sunny) ∧ (Humidity = Normal) THEN PlayTennis = Yes
 - …
Continuous Valued Attributes

- Two Methods for Handling Continuous Attributes
 - Discretization (e.g., histogramming)
 - Break real-valued attributes into ranges in advance
 - e.g., \{high = Temp > 35º C, med = 10º C < Temp ≤ 35º C, low = Temp ≤ 10º C\}
 - Using thresholds for splitting nodes
 - e.g., \(A ≤ a\) produces subsets \(A ≤ a\) and \(A > a\)
 - Information gain is calculated the same way as for discrete splits

- How to Find the Split with Highest Gain?
 - FOR each continuous attribute \(A\)
 - Divide examples \(x \in D\) according to \(x.A\)
 - FOR each ordered pair of values \((l, u)\) of \(A\) with different labels
 - Evaluate gain of mid-point as a possible threshold, i.e., \(D_A ≤ (l+u)/2, D_A > (l+u)/2\)
 - Example
 - \(A = \text{Length}: 10\ 15\ 21\ 28\ 32\ 40\ 50\)
 - Class: \(-\ +\ +\ -\ +\ +\ -\)
 - Check thresholds: \(\text{Length} ≤ 12.5?\ \text{≤} 24.5?\ \text{≤} 30?\ \text{≤} 45?\)

Attributes with Many Values

- Problem
 - If attribute has many values, \(\text{Gain}(\cdot)\) will select it (why?)
 - Imagine using \(\text{Date} = 06/03/1996\) as an attribute!
- One Approach: Use \(\text{GainRatio}\) instead of \(\text{Gain}\)
 \[
 \text{Gain}(D, A) = -H(D) - \sum_{v \in \text{values}(A)} \left[\frac{|P_v|}{|P|} \cdot H(D_v) \right]
 \]
 \[
 \text{GainRatio}(D, A) = \frac{\text{Gain}(D, A)}{\text{SplitInformation}(D, A)}
 \]
 \[
 \text{SplitInformation}(D, A) = -\sum_{v \in \text{values}(A)} \left[\frac{|P_v|}{|P|} \cdot \log_2 \frac{|P_v|}{|P|} \right]
 \]
 - \(\text{SplitInformation}\): directly proportional to \(c = |\text{values}(A)|\)
 - i.e., penalizes attributes with more values
 - e.g., suppose \(c_1 = c_{\text{date}} = n\) and \(c_2 = 2\)
 - \(\text{SplitInformation} (A_1) = \log(n)\), \(\text{SplitInformation} (A_2) = 1\)
 - If \(\text{Gain}(D, A_1) = \text{Gain}(D, A_2)\), \(\text{GainRatio} (D, A_1) << \text{GainRatio} (D, A_2)\)
 - Thus, preference bias (for lower branch factor) expressed via \(\text{GainRatio}(\cdot)\)
Attributes with Costs

- **Application Domains**
 - **Medical:** Temperature has cost $10; BloodTestResult, $150; Biopsy, $300
 - Also need to take into account *invasiveness* of the procedure (*patient utility*)
 - Risk to patient (e.g., amniocentesis)
 - Other units of cost
 - *Sampling time:* e.g., robot sonar (range finding, etc.)
 - Risk to artifacts, organisms (about which information is being gathered)
 - Related domains (e.g., tomography): *nondestructive evaluation*

- **How to Learn A Consistent Tree with Low Expected Cost?**
 - One approach: replace gain by *Cost-Normalized-Gain*
 - Examples of normalization functions
 - [Nunez, 1988]:
 \[
 \text{Cost - Normalized - Gain}(D, A) = \frac{\text{Gain}(D, A)}{\text{Cost}(D, A)}
 \]
 - [Tan and Schlimmer, 1990]:
 \[
 \text{Cost - Normalized - Gain}(D, A) = \frac{2^{\text{Gain}(D, A)} - 1}{(\text{Cost}(D, A) - 1)^w} \quad w \in [0, 1]
 \]
 where w determines importance of cost

Missing Data: Unknown Attribute Values

- **Problem:** What If Some Examples Missing Values of A?
 - Often, values not available for all attributes during training or testing
 - Example: medical diagnosis
 - \(<\text{Fever} = \text{true}, \text{Blood-Pressure} = \text{normal}, ..., \text{Blood-Test} = ?, ...\>\)
 - Sometimes values truly unknown, sometimes low priority (or cost too high)
 - Missing values in learning versus classification
 - **Training:** evaluate *Gain*(D, A) where for some \(x \in D\), a value for A is not given
 - **Testing:** classify a new example \(x\) without knowing the value of A

- **Solutions:** Incorporating a *Guess* into Calculation of *Gain*(D, A)

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>Play/Tennis?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Light</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Rain</td>
<td>Cold</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Overcast</td>
<td>Cold</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Light</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>Sunny</td>
<td>Cold</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>Sunny</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>12</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>Rain</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>14</td>
<td>Overcast</td>
<td>High</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>15</td>
<td>Rain</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

CIS 732: Machine Learning and Pattern Recognition
Missing Data: Solution Approaches

- **Use Training Example Anyway, Sort Through Tree**
 - For each attribute being considered, guess its value in examples where unknown
 - Base the guess upon examples at current node where value is known

- **Guess the Most Likely Value of $x.A$**
 - Variation 1: if node n tests A, assign most common value of A among other examples routed to node n
 - Variation 2 [Mingers, 1989]: if node n tests A, assign most common value of A among other examples routed to node n that have the same class label as x

- **Distribute the Guess Proportionately**
 - Hedge the bet: distribute the guess according to distribution of values
 - Assign probability p_i to each possible value v_i of $x.A$ [Quinlan, 1993]
 - Assign fraction p_i of x to each descendant in the tree
 - Use this in calculating $Gain(D, A)$ or $Cost-Normalized-Gain(D, A)$

- **In All Approaches, Classify New Examples in Same Fashion**

Missing Data: An Example

- **Guess the Most Likely Value of $x.A$**
 - Variation 1: $Humidity = High$ or Normal ($High: Gain = 0.97$, Normal: < 0.97)
 - Variation 2: $Humidity = High$ (all No cases are High)

- **Probabilistically Weighted Guess**
 - Guess 0.5 High, 0.5 Normal
 - $Gain < 0.97$ (all No cases are High)

- **Test Case: <?, Hot, Normal, Strong>**
 - 1/3 Yes + 1/3 Yes + 1/3 No = Yes
Replication in Decision Trees

- Decision Trees: A Representational Disadvantage
 - DTs are more complex than some other representations
 - Case in point: replications of attributes

- Replication Example
 - e.g., Disjunctive Normal Form (DNF): \((a \land b) \lor (c \land \neg d \land e)\)
 - Disjuncts must be repeated as subtrees

- Partial Solution Approach
 - Creation of new features
 - aka constructive induction (CI)
 - More on CI in Chapter 10, Mitchell

Fringe: Constructive Induction in Decision Trees

- Synthesizing New Attributes
 - Synthesize (create) a new attribute from the conjunction of the last two attributes before a + node
 - aka feature construction

- Example
 - \((a \land b) \lor (c \land \neg d \land e)\)
 - \(A = \neg d \land e\)
 - \(B = a \land b\)

- Repeated application
 - \(C = A \land c\)
 - Correctness?
 - Computation?
Other Issues and Open Problems

• Still to Cover
 – What is the goal (performance element)? Evaluation criterion?
 – When to stop? How to guarantee good generalization?
 – How are we doing?
 • Correctness
 • Complexity

• Oblique Decision Trees
 – Decisions are not “axis-parallel”
 – See: OC1 (included in MLC++)

• Incremental Decision Tree Induction
 – Update an existing decision tree to account for new examples incrementally
 – Consistency issues
 – Minimality issues

History of Decision Tree Research to Date

• 1960's
 – 1966: Hunt, colleagues in psychology used full search decision tree methods to model human concept learning

• 1970's
 – 1977: Breiman, Friedman, colleagues in statistics develop simultaneous Classification And Regression Trees (CART)
 – 1979: Quinlan’s first work with proto-ID3

• 1980's
 – 1984: first mass publication of CART software (now in many commercial codes)
 – 1986: Quinlan’s landmark paper on ID3
 – Variety of improvements: coping with noise, continuous attributes, missing data, non-axis-parallel DTs, etc.

• 1990's
 – 1993: Quinlan’s updated algorithm, C4.5
 – More pruning, overfitting control heuristics (C5.0, etc.); combining DTs
Terminology

- Occam’s Razor and Decision Trees
 - Preference biases: captured by hypothesis space search algorithm
 - Language biases: captured by hypothesis language (search space definition)

- Overfitting
 - Overfitting: \(h \) does better than \(h' \) on training data and worse on test data
 - Prevention, avoidance, and recovery techniques
 - Prevention: attribute subset selection
 - Avoidance: stopping (termination) criteria, cross-validation, pre-pruning
 - Detection and recovery: post-pruning (reduced-error, rule)

- Other Ways to Make Decision Tree Induction More Robust
 - Inequality DTs (decision surfaces): a way to deal with continuous attributes
 - Information gain ratio: a way to normalize against many-valued attributes
 - Cost-normalized gain: a way to account for attribute costs (utilities)
 - Missing data: unknown attribute values or values not yet collected
 - Feature construction: form of constructive induction; produces new attributes
 - Replication: repeated attributes in DTs

Summary Points

- Occam’s Razor and Decision Trees
 - Preference biases versus language biases
 - Two issues regarding Occam algorithms
 - Why prefer smaller trees? (less chance of “coincidence”)
 - Is Occam’s Razor well defined? (yes, under certain assumptions)
 - MDL principle and Occam’s Razor: more to come

- Overfitting
 - Problem: fitting training data too closely
 - General definition of overfitting
 - Why it happens
 - Overfitting prevention, avoidance, and recovery techniques

- Other Ways to Make Decision Tree Induction More Robust

- Next Week: Perceptrons, Neural Nets (Multi-Layer Perceptrons), Winnow