Lecture 07 of 42

Decision Trees, Occam’s Razor, and Overfitting

Wednesday, 31 January 2007

William H. Hsu
Department of Computing and Information Sciences, KSU
http://www.cis.ksu.edu/~bhsu

Readings:
Chapter 3.6-3.8, Mitchell

Lecture Outline

• Read Sections 3.6-3.8, Mitchell
• Occam’s Razor and Decision Trees
 – Preference biases versus language biases
 – Two issues regarding Occam algorithms
 • Is Occam’s Razor well defined?
 • Why prefer smaller trees?
• Overfitting (aka Overtraining)
 – Problem: fitting training data too closely
 • Small-sample statistics
 • General definition of overfitting
 – Overfitting prevention, avoidance, and recovery techniques
 • Prevention: attribute subset selection
 • Avoidance: cross-validation
 • Detection and recovery: post-pruning
• Other Ways to Make Decision Tree Induction More Robust
Decision Tree Learning: Top-Down Induction (ID3)

- Algorithm **Build-DT** (Examples, Attributes)

 IF all examples have the same label THEN RETURN (leaf node with *label*)
 ELSE
 IF set of attributes is empty THEN RETURN (leaf with *majority label*)
 ELSE
 Choose best attribute *A* as root
 FOR each value *v* of *A*
 Create a branch out of the root for the condition *A* = *v*
 IF { *x* ∈ *Examples*: *x*. *A* = *v* } = ∅ THEN RETURN (leaf with *majority label*)
 ELSE
 Build-DT ({ *x* ∈ *Examples*: *x*. *A* = *v* }, Attributes ~ { *A* })

- **But Which Attribute Is Best?**

Broadening the Applicability of Decision Trees

- **Assumptions in Previous Algorithm**
 - Discrete output
 - Real-valued outputs are possible
 - Regression trees [Breiman et al., 1984]
 - Discrete input
 - Quantization methods
 - Inequalities at nodes instead of equality tests (see rectangle example)
- **Scaling Up**
 - Critical in knowledge discovery and database mining (KDD) from very large databases (VLDB)
 - Good news: efficient algorithms exist for processing many examples
 - Bad news: much harder when there are too many attributes
- **Other Desired Tolerances**
 - Noisy data (classification noise = incorrect labels; attribute noise = inaccurate or imprecise data)
 - Missing attribute values
Choosing the “Best” Root Attribute

- **Objective**
 - Construct a decision tree that is as small as possible (Occam’s Razor)
 - Subject to: consistency with labels on training data

- **Obstacles**
 - Finding the minimal consistent hypothesis (i.e., decision tree) is \(\text{NP} \)-hard (D’oh!)
 - Recursive algorithm (Build-DT)
 - A greedy heuristic search for a simple tree
 - Cannot guarantee optimality (D’oh!)

- **Main Decision: Next Attribute to Condition On**
 - Want: attributes that split examples into sets that are relatively pure in one label
 - Result: closer to a leaf node
 - Most popular heuristic
 - Developed by J. R. Quinlan
 - Based on information gain
 - Used in ID3 algorithm

Entropy: Intuitive Notion

- **A Measure of Uncertainty**
 - The Quantity
 - Purity: how close a set of instances is to having just one label
 - Impurity (disorder): how close it is to total uncertainty over labels
 - The Measure: Entropy
 - Directly proportional to impurity, uncertainty, irregularity, surprise
 - Inversely proportional to purity, certainty, regularity, redundancy

- **Example**
 - For simplicity, assume \(H = \{0, 1\} \), distributed according to \(Pr(y) \)
 - Can have (more than 2) discrete class labels
 - Continuous random variables: differential entropy
 - Optimal purity for \(y \): either
 - \(Pr(y = 0) = 1, Pr(y = 1) = 0 \)
 - \(Pr(y = 1) = 1, Pr(y = 0) = 0 \)
 - What is the least pure probability distribution?
 - \(Pr(y = 0) = 0.5, Pr(y = 1) = 0.5 \)
 - Correlates to maximum impurity/uncertainty/irregularity/surprise
 - Property of entropy: concave function (“concave downward”)
Entropy: Information Theoretic Definition

• Components
 – \(D \): a set of examples \(\{ <x_1, c(x_1)>, <x_2, c(x_2)>, \ldots, <x_m, c(x_m)> \} \)
 – \(p_+ = Pr(c(x) = +), p_- = Pr(c(x) = -) \)

• Definition
 – \(H \) is defined over a probability density function \(p \)
 – \(D \) contains examples whose frequency of + and - labels indicates \(p_+ \) and \(p_- \) for the observed data
 – The entropy of \(D \) relative to \(c \) is:
 \[H(D) = -p_+ \log_b (p_+) - p_- \log_b (p_-) \]

• What Units is \(H \) Measured In?
 – Depends on the base \(b \) of the log (bits for \(b = 2 \), nats for \(b = e \), etc.)
 – A single bit is required to encode each example in the worst case (\(p_+ = 0.5 \))
 – If there is less uncertainty (e.g., \(p_+ = 0.8 \)), we can use less than 1 bit each

Information Gain: Information Theoretic Definition

• Partitioning on Attribute Values
 – Recall: a partition of \(D \) is a collection of disjoint subsets whose union is \(D \)
 – Goal: measure the uncertainty removed by splitting on the value of attribute \(A \)

• Definition
 – The information gain of \(D \) relative to attribute \(A \) is the expected reduction in entropy due to splitting (“sorting”) on \(A \):
 \[\text{Gain}(D, A) = -H(D) - \sum_{v \in \text{values}(A)} \left| \frac{p_v}{|D|} \right| \cdot H(D_v) \]
 – Idea: partition on \(A \); scale entropy to the size of each subset \(D_v \)

• Which Attribute Is Best?

[29+, 35-] \(A_1 \)
[21+, 5-] \[8+, 30-\]
[18+, 33-] \[11+, 2-\]

[29+, 35-] \(A_2 \)
An Illustrative Example

- Training Examples for Concept PlayTennis

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Light</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Light</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>

- ID3 = Build-DT using Gain(*)
- How Will ID3 Construct A Decision Tree?

Constructing A Decision Tree for PlayTennis using ID3 [1]

- Selecting The Root Attribute

- Prior (unconditioned) distribution: 9+, 5-
 - $H(D) = -(9/14) \log_2 (9/14) - (5/14) \log_2 (5/14)$ bits = 0.94 bits
 - $H(D, Humidity = High) = -(3/7) \log_2 (3/7) - (4/7) \log_2 (4/7)$ = 0.985 bits
 - $H(D, Humidity = Normal) = -(6/7) \log_2 (6/7) - (1/7) \log_2 (1/7)$ = 0.592 bits
 - Gain(D, Humidity) = 0.94 - 0.985 = 0.592
 - Gain(D, Wind) = 0.94 - (6/14) * 0.811 - (1/14) * 0.811 = 0.048 bits

\[Gain(D,A) = -H(D) - \sum_{v \in \text{values}(A)} \frac{|D_v|}{|D|} * H(D_v) \]
Constructing A Decision Tree for PlayTennis using ID3 [2]

• Selecting The Root Attribute

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Light</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Light</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>12</td>
<td>Overcast</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>

Gain(D, Humidity) = 0.151 bits
Gain(D, Wind) = 0.048 bits
Gain(D, Temperature) = 0.029 bits
Gain(D, Outlook) = 0.246 bits

• Selecting The Next Attribute (Root of Subtree)

• Selecting The Root Attribute

– Gain(D, Humidity) = 0.151 bits
– Gain(D, Wind) = 0.048 bits
– Gain(D, Temperature) = 0.029 bits
– Gain(D, Outlook) = 0.246 bits

• Selecting The Next Attribute (Root of Subtree)

– Continue until every example is included in path or purity = 100%
– What does purity = 100% mean?
– Can Gain(D, A) < 0?

KSU

Constructing A Decision Tree for PlayTennis using ID3 [3]

• Top-Down Induction

– For discrete-valued attributes, terminates in O(n) splits
– Makes at most one pass through data set at each level (why?)

KSU
Constructing A Decision Tree for PlayTennis using ID3 [4]

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Light</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Cloudy</td>
<td>Hot</td>
<td>High</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Light</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>

Hypothesis Space Search by ID3

- **Search Problem**
 - Conduct a search of the space of decision trees, which can represent all possible discrete functions
 - **Pros:** expressiveness; flexibility
 - **Cons:** computational complexity; large, incomprehensible trees (next time)
 - **Objective:** to find the best decision tree (minimal consistent tree)
 - **Obstacle:** finding this tree is \(\mathbb{NP} \)-hard
 - **Tradeoff**
 - Use heuristic (figure of merit that guides search)
 - Use greedy algorithm
 - Aka hill-climbing (gradient “descent”) without backtracking

- **Statistical Learning**
 - Decisions based on statistical descriptors \(p_+, p_- \) for subsamples \(D_v \)
 - In ID3, all data used
 - Robust to noisy data
Inductive Bias in ID3

• Heuristic : Search :: Inductive Bias : Inductive Generalization
 – \(H \) is the power set of instances in \(X \)
 – \(\Rightarrow \) Unbiased? Not really…
 • Preference for short trees (termination condition)
 • Preference for trees with high information gain attributes near the root
 • \(\text{Gain}() \): a heuristic function that captures the inductive bias of ID3
 – Bias in ID3
 • Preference for some hypotheses is encoded in heuristic function
 • Compare: a restriction of hypothesis space \(H \) (previous discussion of propositional normal forms: \(k\)-CNF, etc.)

• Preference for Shortest Tree
 – Prefer shortest tree that fits the data
 – An Occam’s Razor bias: shortest hypothesis that explains the observations

MLC++: A Machine Learning Library

• \textit{MLC++}
 – \texttt{http://www.sgi.com/Technology/mlc}
 – An object-oriented machine learning library
 – Contains a suite of inductive learning algorithms (including ID3)
 – Supports incorporation, reuse of other DT algorithms (C4.5, etc.)
 – Automation of statistical evaluation, cross-validation

• Wrappers
 – Optimization loops that iterate over inductive learning functions (\textit{inducers})
 – Used for performance tuning (finding subset of relevant attributes, etc.)

• Combiners
 – Optimization loops that iterate over or interleave inductive learning functions
 – Used for performance tuning (finding subset of relevant attributes, etc.)
 – Examples: bagging, boosting (later in this course) of ID3, C4.5

• Graphical Display of Structures
 – Visualization of DTs (AT&T \textit{dotty}, SGI \textit{MineSet TreeViz})
 – General logic diagrams (projection visualization)
Occam’s Razor and Decision Trees:
A Preference Bias

- Preference Biases versus Language Biases
 - Preference bias
 • Captured ("encoded") in learning algorithm
 • Compare: search heuristic
 - Language bias
 • Captured ("encoded") in knowledge (hypothesis) representation
 • Compare: restriction of search space
 • aka restriction bias

- Occam’s Razor: Argument in Favor
 – Fewer short hypotheses than long hypotheses
 • e.g., half as many bit strings of length \(n \) as of length \(n + 1 \), \(n \geq 0 \)
 • Short hypothesis that fits data less likely to be coincidence
 • Long hypothesis (e.g., tree with 200 nodes, \(|D| = 100\)) could be coincidence
 – Resulting justification / tradeoff
 • All other things being equal, complex models tend not to generalize as well
 • Assume more model flexibility (specificity) won’t be needed later

Occam’s Razor and Decision Trees:
Two Issues

- Occam’s Razor: Arguments Opposed
 – \(size(h) \) based on \(H \) - circular definition?
 – Objections to the preference bias: “fewer” not a justification

- Is Occam’s Razor Well Defined?
 – Internal knowledge representation (KR) defines which \(h \) are “short” - arbitrary?
 • e.g., single “\((Sunny \land Normal-Humidity) \lor Overcast \lor (Rain \land Light-Wind)\)" test
 • Answer: \(L \) fixed; imagine that biases tend to evolve quickly, algorithms slowly

- Why Short Hypotheses Rather Than Any Other Small \(H \)?
 – There are many ways to define small sets of hypotheses
 – For any size limit expressed by preference bias, some specification \(S \) restricts \(size(h) \) to that limit (i.e., “accept trees that meet criterion \(S \)"
 • e.g., trees with a prime number of nodes that use attributes starting with “Z”
 • Why small trees and not trees that (for example) test \(A_1, A_2, \ldots, A_{11} \) in order?
 • What’s so special about small \(H \) based on \(size(h) \)?
 • Answer: stay tuned, more on this in Chapter 6, Mitchell
Overfitting in Decision Trees: An Example

- **Recall: Induced Tree**
 - Boolean Decision Tree for Concept PlayTennis
 - May fit noise or other coincidental regularities

- **Noisy Training Example**
 - Example 15: <Sunny, Hot, Normal, Strong, ->
 - Example is noisy because the correct label is +
 - Previously constructed tree misclassifies it
 - How shall the DT be revised (incremental learning)?
 - New hypothesis $h' = T'$ is expected to perform worse than $h = T$

Overfitting in Inductive Learning

- **Definition**
 - Hypothesis h overfits training data set D if \exists an alternative hypothesis h' such that $errortest(h) < errortest(h')$ but $error_D(h) > error_D(h')$
 - Causes: sample too small (decisions based on too little data); noise; coincidence

- **How Can We Combat Overfitting?**
 - Analogy with computer virus infection, process deadlock
 - **Prevention**
 - Addressing the problem “before it happens”
 - Select attributes that are relevant (i.e., will be useful in the model)
 - Caveat: chicken-egg problem; requires some predictive measure of relevance
 - **Avoidance**
 - Sidestepping the problem just when it is about to happen
 - Holding out a test set, stopping when h starts to do worse on it
 - **Detection and Recovery**
 - Letting the problem happen, detecting when it does, recovering afterward
 - Build model, remove (prune) elements that contribute to overfitting
Decision Tree Learning: Overfitting Prevention and Avoidance

- **How Can We Combat Overfitting?**
 - **Prevention** (more on this later)
 - Select attributes that are **relevant** (i.e., will be useful in the DT)
 - Predictive measure of relevance: attribute filter or subset selection wrapper
 - **Avoidance**
 - Holding out a validation set, stopping when \(h \equiv T \) starts to do worse on it

- **How to Select “Best” Model (Tree)**
 - Measure performance over training data and separate validation set
 - Minimum Description Length (MDL):
 - minimize \(\text{size}(h \equiv T) + \text{size(misclassifications}(h \equiv T) \)
Reduced-Error Pruning

- **Post-Pruning, Cross-Validation Approach**
- **Split Data into Training and Validation Sets**
- **Function `Prune(T, node)`**
 - Remove the subtree rooted at node
 - Make node a leaf (with majority label of associated examples)
- **Algorithm Reduced-Error-Pruning (D)**
 - Partition D into D_{train} (training / “growing”), $D_{validation}$ (validation / “pruning”)
 - Build complete tree T using ID3 on D_{train}
 - UNTIL accuracy on $D_{validation}$ decreases DO
 - FOR each non-leaf node candidate in T
 - $\text{Temp}[\text{candidate}] \leftarrow \text{Prune}(T, \text{candidate})$
 - $\text{Accuracy}[\text{candidate}] \leftarrow \text{Test}(\text{Temp}[\text{candidate}], D_{validation})$
 - $T \leftarrow T' \in \text{Temp}$ with best value of Accuracy (best increase; greedy)
 - RETURN (pruned) T

Effect of Reduced-Error Pruning

- **Reduction of Test Error by Reduced-Error Pruning**
 - Test error reduction achieved by pruning nodes
 - \textit{NB}: here, $D_{validation}$ is different from both D_{train} and D_{test}
- **Pros and Cons**
 - \textbf{Pro}: Produces smallest version of most accurate T' (subtree of T)
 - \textbf{Con}: Uses less data to construct T
 - Can afford to hold out $D_{validation}$?
 - If not (data is too limited), may make error worse (insufficient D_{train})
Rule Post-Pruning

- Frequently Used Method
 - Popular anti-overfitting method; perhaps most popular pruning method
 - Variant used in C4.5, an outgrowth of ID3

- Algorithm Rule-Post-Pruning \((D)\)
 - Infer \(T\) from \(D\) (using ID3) - grow until \(D\) is fit as well as possible (allow overfitting)
 - Convert \(T\) into equivalent set of rules (one for each root-to-leaf path)
 - Prune (generalize) each rule independently by deleting any preconditions whose deletion improves its estimated accuracy
 - Sort the pruned rules
 - Sort by their estimated accuracy
 - Apply them in sequence on \(D_{test}\)

Converting a Decision Tree into Rules

- Rule Syntax
 - LHS: precondition (conjunctive formula over attribute equality tests)
 - RHS: class label

- Example
 - IF (Outlook = Sunny) \(\land\) (Humidity = High) THEN PlayTennis = No
 - IF (Outlook = Sunny) \(\land\) (Humidity = Normal) THEN PlayTennis = Yes
 - ...
Continuous Valued Attributes

- Two Methods for Handling Continuous Attributes
 - Discretization (e.g., histogramming)
 - Break real-valued attributes into ranges in advance
 - e.g., \{high = Temp > 35° C, med = 10° C < Temp ≤ 35° C, low = Temp ≤ 10° C\}
 - Using thresholds for splitting nodes
 - e.g., \(A ≤ a\) produces subsets \(A ≤ a\) and \(A > a\)
 - Information gain is calculated the same way as for discrete splits

- How to Find the Split with Highest Gain?
 - FOR each continuous attribute \(A\)
 Divide examples \(x \in D\) according to \(x.A\)
 - FOR each ordered pair of values \((l, u)\) of \(A\) with different labels
 Evaluate gain of mid-point as a possible threshold, i.e., \(D_A \leq (l+u)/2, D_A > (l+u)/2\)
 - Example
 - \(A = Length: 10 \ 15 \ 21 \ 28 \ 32 \ 40 \ 50\)
 - Class: - + + - + - +
 - Check thresholds: \(Length ≤ 12.5?\ \ ≤ 24.5?\ \ ≤ 30?\ \ ≤ 45?\)

Attributes with Many Values

- Problem
 - If attribute has many values, \(Gain(*)\) will select it (why?)
 - Imagine using \(Date = 06/03/1996\) as an attribute!

- One Approach: Use \(GainRatio\) instead of \(Gain\)
 \[
 Gain(D, A) = -H(D) - \sum_{v \in values(A)} \frac{p_v}{|P|} H(D_v)
 \]
 \[
 GainRatio(D, A) = \frac{Gain(D, A)}{SplitInformation(D, A)}
 \]
 \[
 SplitInformation(D, A) = -\sum_{v \in values(A)} \frac{p_v}{|P|} log\left(\frac{p_v}{|P|}\right)
 \]
 - \(SplitInformation\): directly proportional to \(c = |values(A)|\)
 - i.e., penalizes attributes with more values
 - e.g., suppose \(c_1 = c_{Date} = n\) and \(c_2 = 2\)
 - \(SplitInformation(A_1) = \log(n), SplitInformation(A_2) = 1\)
 - If \(Gain(D, A_1) = Gain(D, A_2), GainRatio(D, A_1) < GainRatio(D, A_2)\)
 - Thus, preference bias (for lower branch factor) expressed via \(GainRatio(*)\)
Attributes with Costs

- **Application Domains**
 - Medical: Temperature has cost $10; BloodTestResult, $150; Biopsy, $300
 - Also need to take into account invasiveness of the procedure (patient utility)
 - Risk to patient (e.g., amniocentesis)
 - Other units of cost
 - Sampling time: e.g., robot sonar (range finding, etc.)
 - Risk to artifacts, organisms (about which information is being gathered)
 - Related domains (e.g., tomography): nondestructive evaluation

- **How to Learn A Consistent Tree with Low Expected Cost?**
 - One approach: replace gain by Cost-Normalized-Gain
 - Examples of normalization functions
 - [Nunez, 1988]:
 \[
 \text{Cost-Normalized - Gain}(D, A) = \frac{\text{Gain}(D, A)}{\text{Cost}(D, A)}
 \]
 - [Tan and Schlimmer, 1990]:
 \[
 \text{Cost-Normalized - Gain}(D, A) = \frac{\text{Gain}(D, A)}{(\text{Cost}(D, A) - 1)^w} \quad w \in [0, 1]
 \]
 where \(w\) determines importance of cost

Missing Data: Unknown Attribute Values

- **Problem: What If Some Examples Missing Values of \(A\)?**
 - Often, values not available for all attributes during training or testing
 - Example: medical diagnosis
 - \(<\text{Fever} = \text{true}, \text{Blood-Pressure} = \text{normal}, \ldots, \text{Blood-Test} = ?, \ldots>\>
 - Sometimes values truly unknown, sometimes low priority (or cost too high)
 - Missing values in learning versus classification
 - **Training:** evaluate \(\text{Gain}(D, A)\) where for some \(x \in D\), a value for \(A\) is not given
 - **Testing:** classify a new example \(x\) without knowing the value of \(A\)

- **Solutions: Incorporating a Guess into Calculation of \(\text{Gain}(D, A)\)**

| Bay | Outlook | Temperature | Humidity | Wind | Play/Tennis?
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Rain</td>
<td>Cold</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Overcast</td>
<td>Cold</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>Sunny</td>
<td>Cold</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>12</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>

CIS 732: Machine Learning and Pattern Recognition
Terminology

- Occam’s Razor and Decision Trees
 - Preference biases: captured by hypothesis space search algorithm
 - Language biases: captured by hypothesis language (search space definition)

- Overfitting
 - Overfitting: \(h \) does better than \(h' \) on training data and worse on test data
 - Prevention, avoidance, and recovery techniques
 - Prevention: attribute subset selection
 - Avoidance: stopping (termination) criteria, cross-validation, pre-pruning
 - Detection and recovery: post-pruning (reduced-error, rule)

- Other Ways to Make Decision Tree Induction More Robust
 - Inequality DTs (decision surfaces): a way to deal with continuous attributes
 - Information gain ratio: a way to normalize against many-valued attributes
 - Cost-normalized gain: a way to account for attribute costs (utilities)
 - Missing data: unknown attribute values or values not yet collected
 - Feature construction: form of constructive induction; produces new attributes
 - Replication: repeated attributes in DTs

Summary Points

- Occam’s Razor and Decision Trees
 - Preference biases versus language biases
 - Two issues regarding Occam algorithms
 - Why prefer smaller trees? (less chance of “coincidence”)
 - Is Occam’s Razor well defined? (yes, under certain assumptions)
 - MDL principle and Occam’s Razor: more to come

- Overfitting
 - Problem: fitting training data too closely
 - General definition of overfitting
 - Why it happens
 - Overfitting prevention, avoidance, and recovery techniques

- Other Ways to Make Decision Tree Induction More Robust
 - Next Week: Perceptrons, Neural Nets (Multi-Layer Perceptrons), Winnow