Lecture 14 of 42

Support Vector Machines

Thursday, 15 February 2007

William H. Hsu
Department of Computing and Information Sciences, KSU
http://www.cis.ksu.edu/~bhsu
http://www.kddresearch.org

Readings:
Lecture Notes on SVM by Carlos Guestrin, CMU: http://snipurl.com/g4i7
"Bagging, Boosting, and C4.5", Quinlan

Lecture Outline

• Readings
 – Section 7.5, Mitchell
 – Section 5, MLC++ manual, Kohavi and Sommerfield
• This Week’s Paper Review: “Bagging, Boosting, and C4.5”, J. R. Quinlan
• Combining Classifiers
 – Problem definition and motivation: improving accuracy in concept learning
 – General framework: collection of weak classifiers to be improved
• Weighted Majority (WM)
 – Weighting system for collection of algorithms
 – “Trusting” each algorithm in proportion to its training set accuracy
 – Mistake bound for WM
• Bootstrap Aggregating (Bagging)
 – Voting system for collection of algorithms (trained on subsamples)
 – When to expect bagging to work (unstable learners)
• Next Lecture: Boosting the Margin, Hierarchical Mixtures of Experts
Backpropagation Algorithm

- **Intuitive Idea:** Distribute *Blame* for Error to Previous Layers

- **Algorithm** Train-by-Backprop \((D, r)\)
 - Each training example is a pair of the form \(\langle x, t(x) \rangle\), where \(x\) is the vector of input values and \(t(x)\) is the output value. \(r\) is the learning rate (e.g., 0.05)
 - Initialize all weights \(w_i\) to (small) random values
 - UNTIL the termination condition is met, DO
 - FOR each \(\langle x, t(x) \rangle\) in \(D\), DO
 - Input the instance \(x\) to the unit and compute the output \(o(x) = \sigma(\text{net}(x))\)
 - FOR each output unit \(k\), DO
 - FOR each hidden unit \(j\), DO
 - Update each \(w = u_{ij}\) (a = \(h_j\)) or \(w = v_{jk}\) (a = \(o_k\))
 \[
 \Delta w_{\text{start-layer}, \text{end-layer}} + \Delta w_{\text{start-layer}, \text{end-layer}}
 \]
 - \(\delta_{\text{end-layer}} = r \delta_{\text{end-layer}} a_{\text{end-layer}}\)
 - RETURN final \(u, v\)

Backpropagation and Local Optima

- **Gradient Descent in Backprop**
 - Performed over entire network weight vector
 - Easily generalized to arbitrary directed graphs
 - **Property:** Backprop on feedforward ANNs will find a local (not necessarily global) error minimum

- **Backprop in Practice**
 - Local optimization often works well (can run multiple times)
 - Often include weight momentum \(\alpha\)
 \[
 \Delta w_{\text{start-layer}, \text{end-layer}}(n) = r \delta_{\text{end-layer}} a_{\text{end-layer}} + \alpha \Delta w_{\text{start-layer}, \text{end-layer}}(n-1)
 \]
 - Minimizes error over training examples - generalization to subsequent instances?
 - Training often very slow: thousands of iterations over \(D\) (epochs)
 - **Inference** (applying network after training) typically very fast
 - Classification
 - Control
Feedforward ANNs: Representational Power and Bias

• Representational (i.e., Expressive) Power
 – Backprop presented for feedforward ANNs with single hidden layer (2-layer)
 – 2-layer feedforward ANN
 • Any Boolean function (simulate a 2-layer AND-OR network)
 • Any bounded continuous function (approximate with arbitrarily small error) [Cybenko, 1989; Hornik et al., 1989]
 – Sigmoid functions: set of basis functions; used to compose arbitrary functions
 – 3-layer feedforward ANN: any function (approximate with arbitrarily small error) [Cybenko, 1988]
 – Functions that ANNs are good at acquiring: Network Efficiently Representable Functions (NERFs) - how to characterize? [Russell and Norvig, 1995]

• Inductive Bias of ANNs
 – n-dimensional Euclidean space (weight space)
 – Continuous (error function smooth with respect to weight parameters)
 – Preference bias: “smooth interpolation” among positive examples
 – Not well understood yet (known to be computationally hard)

Learning Hidden Layer Representations

• Hidden Units and Feature Extraction
 – Training procedure: hidden unit representations that minimize error E
 – Sometimes backprop will define new hidden features that are not explicit in the input representation x, but which capture properties of the input instances that are most relevant to learning the target function \(f(x) \)
 – Hidden units express newly constructed features
 – Change of representation to linearly separable \(D' \)

• A Target Function (Sparse aka 1-of-C, Coding)

<table>
<thead>
<tr>
<th>Input</th>
<th>Hidden Values</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0 0 0 0 0</td>
<td>0.89 0.04 0.08</td>
<td>1 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 1 0 0 0 0 0</td>
<td>0.01 0.71 0.28</td>
<td>0 1 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 1 0 0 0 0</td>
<td>0.51 0.73 0.24</td>
<td>0 0 0 1 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 1 0 0 0</td>
<td>0.97 0.03 0.01</td>
<td>0 0 0 0 0 1 0 0</td>
</tr>
<tr>
<td>0 0 0 0 1 0 0</td>
<td>0.02 0.96 0.04</td>
<td>0 0 0 0 0 0 1 0</td>
</tr>
<tr>
<td>0 0 0 0 0 1 0</td>
<td>0.99 0.97 0.71</td>
<td>0 0 0 0 0 0 0 1</td>
</tr>
<tr>
<td>0 0 0 0 0 0 1</td>
<td>0.01 0.05 0.02</td>
<td>0 0 0 0 0 0 0 1</td>
</tr>
</tbody>
</table>

– Can this be learned? (Why or why not?)
Training:
Evolution of Error and Hidden Unit Encoding

- Input-to-Hidden Unit Weights and Feature Extraction
 - Changes in first weight layer values correspond to changes in hidden layer encoding and consequent output squared errors
 - w_0 (bias weight, analogue of threshold in LTU) converges to a value near 0
 - Several changes in first 1000 epochs (different encodings)
Convergence of Backpropagation

- No Guarantee of Convergence to Global Optimum Solution
 - Compare: perceptron convergence (to best $h \in H$, provided $h \in H$; i.e., LS)
 - Gradient descent to some local error minimum (perhaps not global minimum…)
 - Possible improvements on backprop (BP)
 - Momentum term (BP variant with slightly different weight update rule)
 - Stochastic gradient descent (BP algorithm variant)
 - Train multiple nets with different initial weights; find a good mixture
 - Improvements on feedforward networks
 - Bayesian learning for ANNs (e.g., simulated annealing) - later
 - Other global optimization methods that integrate over multiple networks

- Nature of Convergence
 - Initialize weights near zero
 - Therefore, initial network near-linear
 - Increasingly non-linear functions possible as training progresses

Overtraining in ANNs

- Recall: Definition of Overfitting
 - h' worse than h on D_{train} better on D_{test}

- Overtraining: A Type of Overfitting
 - Due to excessive iterations
 - Avoidance: stopping criterion
 (cross-validation: holdout, k-fold)
 - Avoidance: weight decay

Error versus epochs (Example 1)

Error versus epochs (Example 2)
Overfitting in ANNs

- Other Causes of Overfitting Possible
 - Number of hidden units sometimes set in advance
 - Too few hidden units ("underfitting")
 - ANNs with no growth
 - Analogy: underdetermined linear system of equations (more unknowns than equations)
 - Too many hidden units
 - ANNs with no pruning
 - Analogy: fitting a quadratic polynomial with an approximator of degree >> 2

- Solution Approaches
 - Prevention: attribute subset selection (using pre-filter or wrapper)
 - Avoidance
 - Hold out cross-validation (CV) set or split k ways (when to stop?)
 - Weight decay: decrease each weight by some factor on each epoch
 - Detection/recovery: random restarts, addition and deletion of weights, units

Example:
Neural Nets for Face Recognition

- 90% Accurate Learning Head Pose, Recognizing 1-of-20 Faces
Example:
NetTalk

- Sejnowski and Rosenberg, 1987
- Early Large-Scale Application of Backprop
 - Learning to convert text to speech
 - Acquired model: a mapping from letters to phonemes and stress marks
 - Output passed to a speech synthesizer
 - Good performance after training on a vocabulary of ~1000 words
- Very Sophisticated Input-Output Encoding
 - Input: 7-letter window; determines the phoneme for the center letter and context on each side; distributed (i.e., sparse) representation: 200 bits
 - Output: units for articulatory modifiers (e.g., “voiced”), stress, closest phoneme; distributed representation
 - 40 hidden units; 10000 weights total
- Experimental Results
 - Vocabulary: trained on 1024 of 1463 (informal) and 1000 of 20000 (dictionary)
 - 78% on informal, ~60% on dictionary
- http://www.boltz.cs.cmu.edu/benchmarks/nettalk.html

Alternative Error Functions

- Penalize Large Weights (with Penalty Factor w_p)
 \[
 E(w) = \frac{1}{2} \sum_{(x,\hat{x}) \in D} \sum_{k \in \text{outputs}} \left(t_k(x) - o_k(x) \right)^2 + w_p \sum_{\text{start layer,end layer}} w^2
 \]
- Train on Both Target Slopes and Values
 \[
 E(w) = \frac{1}{2} \sum_{(x,\hat{x}) \in D} \sum_{k \in \text{outputs}} \left(t_k(x) - o_k(x) \right)^2 + w_s \sum_{i \in \text{inputs}} \left(\frac{\partial t_i(x)}{\partial x_i} \cdot \frac{\partial o_i(x)}{\partial x_i} \right)^2
 \]
- Tie Together Weights
 - e.g., in phoneme recognition network
 - See: Connectionist Speech Recognition [Bourlard and Morgan, 1994]
Recurrent Networks

• Representing Time Series with ANNs
 – Feedforward ANN: $y(t + 1) = \text{net}(x(t))$
 – Need to capture temporal relationships

• Solution Approaches
 – Directed cycles
 – Feedback
 • Output-to-input [Jordan]
 • Hidden-to-input [Elman]
 • Input-to-input
 – Captures time-lagged relationships
 • Among $x(t' \leq t)$ and $y(t + 1)$
 • Among $y(t' \leq t)$ and $y(t + 1)$
 – Learning with recurrent ANNs
 • Elman, 1990; Jordan, 1987
 • Principe and deVries, 1992
 • Mozer, 1994; Hsu and Ray, 1998

New Neuronal Models

• Neurons with State
 – Neuroids [Valiant, 1994]
 – Each basic unit may have a state
 – Each may use a different update rule (or compute differently based on state)
 – Adaptive model of network
 • Random graph structure
 • Basic elements receive meaning as part of learning process

• Pulse Coding
 – Spiking neurons [Maass and Schmitt, 1997]
 – Output represents more than activation level
 – Phase shift between firing sequences counts and adds expressivity

• New Update Rules
 – Non-additive update [Stein and Meredith, 1993; Seguin, 1998]
 – Spiking neuron model

• Other Temporal Codings: (Firing) Rate Coding
Some Current Issues and Open Problems in ANN Research

- Hybrid Approaches
 - Incorporating knowledge and analytical learning into ANNs
 - Knowledge-based neural networks [Flann and Dietterich, 1989]
 - Combining uncertain reasoning and ANN learning and inference
 - Probabilistic ANNs

- Global Optimization with ANNs
 - Markov chain Monte Carlo (MCMC) [Neal, 1996] - e.g., simulated annealing
 - Relationship to genetic algorithms - later

- Understanding ANN Output
 - Knowledge extraction from ANNs
 - Rule extraction
 - Other decision surfaces
 - Decision support and KDD applications [Fayyad et al, 1996]

- Many, Many More Issues (Robust Reasoning, Representations, etc.)

Stacked Generalization: Idea

- Stacked Generalization aka Stacking

- Intuitive Idea
 - Train multiple learners
 - Each uses subsample of D
 - May be ANN, decision tree, etc.
 - Train combiner on validation segment
 - See [Wolpert, 1992; Bishop, 1995]
Stacked Generalization: Procedure

- Algorithm Combiner-Stacked-Gen \((D, L, k, n, m', \text{Levels})\)
 - Divide \(D\) into \(k\) segments, \(S[1], S[2], \ldots, S[k]\) \(\text{assert } D.\text{size} = m\)
 - FOR \(i \leftarrow 1 \text{ TO } k\) DO
 - Validation-Set \(\leftarrow S[i]\) \(\text{m/k examples}\)
 - FOR \(j \leftarrow 1 \text{ TO } n\) DO
 - Train-Set\([j]\) \(\leftarrow \text{Sample-With-Replacement} (D \sim S[i], m')\) \(\text{m - m/k examples}\)
 - IF \(\text{Levels} > 1\) THEN
 - \(P[j] \leftarrow \text{Combiner-Stacked-Gen} (\text{Train-Set}\[j], L, k, n, m', \text{Levels - 1})\)
 - ELSE \(\text{Base case: 1 level}\)
 - \(P[j] \leftarrow L[j].\text{Train-Inducer} (\text{Train-Set}\[j])\)
 - Combiner \(\leftarrow L[0].\text{Train-Inducer} (\text{Validation-Set}.\text{targets}, \text{Apply-Each} (P, \text{Validation-Set}.\text{inputs}))\)
 - Predictor \(\leftarrow \text{Make-Predictor} (\text{Combiner}, P)\)
 - RETURN Predictor
- Function Sample-With-Replacement: Same as for Bagging

Stacked Generalization: Properties

- Similar to Cross-Validation
 - \(k\)-fold: rotate validation set
 - Combiner mechanism based on validation set as well as training set
 - Compare: committee-based combiners [Perrone and Cooper, 1993; Bishop, 1995] aka consensus under uncertainty / fuzziness, consensus models
 - Common application with cross-validation: treat as overfitting control method
 - Usually improves generalization performance
- Can Apply Recursively (Hierarchical Combiner)
 - Adapt to inducers on different subsets of input
 - Can apply \(s(\text{Train-Set}[j])\) to transform each input data set
 - e.g., attribute partitioning [Hsu, 1998; Hsu, Ray, and Wilkins, 2000]
 - Compare: Hierarchical Mixtures of Experts (HME) [Jordan et al., 1991]
 - Many differences (validation-based vs. mixture estimation; online vs. offline)
 - Some similarities (hierarchical combiner)
Other Combiners

• So Far: Single-Pass Combiners
 – First, train each inducer
 – Then, train combiner on their output and evaluate based on criterion
 • Weighted majority: training set accuracy
 • Bagging: training set accuracy
 • Stacking: validation set accuracy
 – Finally, apply combiner function to get new prediction algorithm (classifier)
 • Weighted majority: weight coefficients (penalized based on mistakes)
 • Bagging: voting committee of classifiers
 • Stacking: validated hierarchy of classifiers with trained combiner inducer

• Next: Multi-Pass Combiners
 – Train inducers and combiner function(s) concurrently
 – Learn how to divide and balance learning problem across multiple inducers
 – Framework: mixture estimation

Terminology

• Combining Classifiers
 – Weak classifiers: not guaranteed to do better than random guessing
 – Combiners: functions f: prediction vector \times instance \rightarrow prediction

• Single-Pass Combiners
 – Weighted Majority (WM)
 • Weights prediction of each inducer according to its training-set accuracy
 • Mistake bound: maximum number of mistakes before converging to correct h
 • Incrementality: ability to update parameters without complete retraining
 – Bootstrap Aggregating (aka Bagging)
 • Takes vote among multiple inducers trained on different samples of D
 • Subsampling: drawing one sample from another ($D \sim D$)
 • Unstable inducer: small change to D causes large change in h
 – Stacked Generalization (aka Stacking)
 • Hierarchical combiner: can apply recursively to re-stack
 • Trains combiner inducer using validation set
Summary Points

- **Combining Classifiers**
 - Problem definition and motivation: improving accuracy in concept learning
 - General framework: collection of weak classifiers to be improved (data fusion)
- **Weighted Majority (WM)**
 - Weighting system for collection of algorithms
 - Weights each algorithm *in proportion to its training set accuracy*
 - Use this weight in performance element (and on test set predictions)
 - Mistake bound for WM
- **Bootstrap Aggregating (Bagging)**
 - Voting system for collection of algorithms
 - Training set for each member: sampled with replacement
 - Works for unstable inducers
- **Stacked Generalization (aka Stacking)**
 - Hierarchical system for combining inducers (ANNs or other inducers)
 - Training sets for “leaves”: sampled with replacement; combiner: validation set
- **Next Lecture: Boosting the Margin, Hierarchical Mixtures of Experts**