Lecture 16 of 42

Intro to Genetic Algorithms (continued) and Bayesian Preliminaries

Wednesday, 21 February 2007

William H. Hsu
Department of Computing and Information Sciences, KSU
http://www.kddresearch.org

Readings:
Sections 6.1-6.5, Mitchell

Lecture Outline

• Read Sections 6.1-6.5, Mitchell
• Overview of Bayesian Learning
 – Framework: using probabilistic criteria to generate hypotheses of all kinds
 – Probability: foundations
• Bayes’s Theorem
 – Definition of conditional (posterior) probability
 – Ramifications of Bayes’s Theorem
 • Answering probabilistic queries
 • MAP hypotheses
• Generating Maximum A Posteriori (MAP) Hypotheses
• Generating Maximum Likelihood Hypotheses
• Next Week: Sections 6.6-6.13, Mitchell; Roth; Pearl and Verma
 – More Bayesian learning: MDL, BOC, Gibbs, Simple (Naïve) Bayes
 – Learning over text
Simple Genetic Algorithm (SGA)

- Algorithm Simple-Genetic-Algorithm (Fitness, Fitness-Threshold, p, r, m)
 // p: population size; r: replacement rate (aka generation gap width), m: string size
 - P ← p random hypotheses // initialize population
 - FOR each h in P DO \(f[h] \leftarrow \text{Fitness}(h) \) // evaluate Fitness: hypothesis \(\rightarrow \) R
 - WHILE (Max(f) < Fitness-Threshold) DO
 - 1. Select: Probabilistically select \((1 - r)p\) members of \(P \) to add to \(P_s \)
 - \(P(h) = \frac{f[h]}{\sum_j f[h_j]} \)
 - 2. Crossover:
 - Probabilistically select \((r \cdot p)/2\) pairs of hypotheses from \(P \)
 - FOR each pair \(<h_1, h_2>\) DO
 - \(P_s += \text{Crossover}(<h_1, h_2>) \) // \(P_s[t+1] = P_s[t] + <\text{offspring}_1, \text{offspring}_2> \)
 - 3. Mutate: Invert a randomly selected bit in \(m \cdot p \) random members of \(P_s \)
 - 4. Update: \(P \leftarrow P_s \)
 - 5. Evaluate: FOR each h in P DO \(f[h] \leftarrow \text{Fitness}(h) \)
 - RETURN the hypothesis \(h \) in \(P \) that has maximum fitness \(f[h] \)

GA-Based Inductive Learning (GABIL)

- GABIL System [Dejong et al, 1993]
 - Given: concept learning problem and examples
 - Learn: disjunctive set of propositional rules
 - Goal: results competitive with those for current decision tree learning algorithms (e.g., C4.5)

- Fitness Function: \(\text{Fitness}(h) = (\text{Correct}(h))^2 \)

- Representation
 - Rules: IF \(a_1 = T \land a_2 = F \) THEN \(c = T \); IF \(a_2 = T \) THEN \(c = F \)
 - Bit string encoding: \(a_1[10] \cdot a_2[01] \cdot c[1] \cdot a_1[11] \cdot a_2[10] \cdot c[0] = 100111100 \)

- Genetic Operators
 - Want variable-length rule sets
 - Want only well-formed bit string hypotheses
Crossover:
Variable-Length Bit Strings

• Basic Representation
 – Start with
 \[a_1 \quad a_2 \quad c \quad a_1 \quad a_2 \quad c \]
 \[h_1 \quad 1[0 \quad 01 \quad 1 \quad 11 \quad 10 \quad 0] \]
 \[h_2 \quad 0[1 \quad 1]1 \quad 0 \quad 10 \quad 01 \quad 0 \]
 – Idea: allow crossover to produce variable-length offspring

• Procedure
 – 1. Choose crossover points for \(h_1 \), e.g., after bits 1, 8
 – 2. Now restrict crossover points in \(h_2 \) to those that produce bitstrings with well-defined semantics, e.g., \(<1, 3>, <1, 8>, <6, 8>\)

• Example
 – Suppose we choose \(<1, 3>\)
 – Result
 \[h_3 \quad 11 \quad 10 \quad 0 \]
 \[h_4 \quad 00 \quad 01 \quad 11 \quad 11 \quad 10 \quad 01 \quad 0 \]

GABIL Extensions

• New Genetic Operators
 – Applied probabilistically
 – 1. AddAlternative: generalize constraint on \(a_i \) by changing a 0 to a 1
 – 2. DropCondition: generalize constraint on \(a_i \) by changing every 0 to a 1

• New Field
 – Add fields to bit string to decide whether to allow the above operators
 \[a_1 \quad a_2 \quad c \quad a_1 \quad a_2 \quad c \quad AA \quad DC \]
 \[01 \quad 11 \quad 0 \quad 10 \quad 01 \quad 0 \quad 1 \quad 0 \]
 – So now the learning strategy also evolves!
 – aka genetic wrapper
GABIL Results

- **Classification Accuracy**
 - Compared to symbolic rule/tree learning methods
 - C4.5 [Quinlan, 1993]
 - ID3R
 - AQ14 [Michalski, 1986]
 - Performance of GABIL comparable
 - Average performance on a set of 12 synthetic problems: 92.1% test accuracy
 - Symbolic learning methods ranged from 91.2% to 96.6%

- **Effect of Generalization Operators**
 - Result above is for GABIL without AA and DC
 - Average test set accuracy on 12 synthetic problems with AA and DC: 95.2%

Building Blocks (Schemas)

- **Problem**
 - How to characterize evolution of population in GA?
- **Goal**
 - Identify basic building block of GAs
 - Describe family of individuals

- **Definition: Schema**
 - String containing 0, 1, * (“don’t care”)
 - Typical schema: 10**0*
 - Instances of above schema: 101101, 100000, ...

- **Solution Approach**
 - Characterize population by number of instances representing each possible schema
 - \(m(s, t) \) = number of instances of schema \(s \) in population at time \(t \)
Selection and Building Blocks

- **Restricted Case: Selection Only**
 - \(f(t) \) = average fitness of population at time \(t \)
 - \(m(s, t) \) = number of instances of schema \(s \) in population at time \(t \)
 - \(\bar{u}(s, t) \) = average fitness of instances of schema \(s \) at time \(t \)

- **Quantities of Interest**
 - Probability of selecting \(h \) in one selection step
 \[P(h) = \frac{f(h)}{\sum_{i=1}^{n} f(h_i)} \]
 - Probability of selecting an instance of \(s \) in one selection step
 \[P(h \in s) = \sum_{h_i \in s} \frac{f(h_i)}{n \cdot f(t)} = \frac{\bar{u}(s, t) \cdot m(s, t)}{f(t)} \]
 - Expected number of instances of \(s \) after \(n \) selections
 \[E[m(s, t + 1)] = \frac{\bar{u}(s, t)}{f(t)} \cdot m(s, t) \]

Schema Theorem

- **Theorem**
 \[E[m(s, t + 1)] \geq \frac{\bar{u}(s, t)}{f(t)} m(s, t) \left(1 - p_c \frac{d}{l-1} \right) \left(1 - p_m \right)^{o(s)} \]
 - \(m(s, t) \) = number of instances of schema \(s \) in population at time \(t \)
 - \(f(t) \) = average fitness of population at time \(t \)
 - \(\bar{u}(s, t) \) = average fitness of instances of schema \(s \) at time \(t \)
 - \(p_c \) = probability of single point crossover operator
 - \(p_m \) = probability of mutation operator
 - \(l \) = length of individual bit strings
 - \(o(s) \) = number of defined (non "*"*) bits in \(s \)
 - \(d(s) \) = distance between rightmost, leftmost defined bits in \(s \)

- **Intuitive Meaning**
 - “The expected number of instances of a schema in the population tends toward its relative fitness”
 - A fundamental theorem of GA analysis and design
Bayesian Learning

- **Framework: Interpretations of Probability [Cheeseman, 1985]**
 - **Bayesian subjectivist view**
 - A measure of an agent's belief in a proposition
 - Proposition denoted by random variable (sample space: range)
 - e.g., \(Pr(\text{Outlook} = \text{Sunny}) = 0.8 \)
 - **Frequentist view:** probability is the frequency of observations of an event
 - **Logicist view:** probability is inferential evidence in favor of a proposition

- **Typical Applications**
 - HCI: learning natural language; intelligent displays; decision support
 - Approaches: prediction; sensor and data fusion (e.g., bioinformatics)

- **Prediction: Examples**
 - Measure relevant parameters: temperature, barometric pressure, wind speed
 - Make statement of the form \(Pr(\text{Tomorrow's-Weather} = \text{Rain}) = 0.5 \)
 - College admissions: \(Pr(\text{Acceptance}) = p \)
 - Plain beliefs: unconditional acceptance \((p = 1) \) or categorical rejection \((p = 0) \)
 - Conditional beliefs: depends on reviewer (use probabilistic model)

Two Roles for Bayesian Methods

- **Practical Learning Algorithms**
 - Naïve Bayes (aka simple Bayes)
 - Bayesian belief network (BBN) structure learning and parameter estimation
 - Combining prior knowledge (prior probabilities) with observed data
 - A way to incorporate background knowledge (BK), aka domain knowledge
 - Requires prior probabilities (e.g., annotated rules)

- **Useful Conceptual Framework**
 - Provides "gold standard" for evaluating other learning algorithms
 - Bayes Optimal Classifier (BOC)
 - Stochastic Bayesian learning: Markov chain Monte Carlo (MCMC)
 - Additional insight into Occam's Razor (MDL)
Probabilistic Concepts versus Probabilistic Learning

- Two Distinct Notions: Probabilistic Concepts, Probabilistic Learning

- Probabilistic Concepts
 - Learned concept is a function, $c: X \rightarrow [0, 1]$
 - $c(x)$, the target value, denotes the probability that the label 1 (i.e., True) is assigned to x
 - Previous learning theory is applicable (with some extensions)

- Probabilistic (i.e., Bayesian) Learning
 - Use of a probabilistic criterion in selecting a hypothesis h
 - e.g., “most likely” h given observed data D: MAP hypothesis
 - e.g., h for which D is “most likely”: max likelihood (ML) hypothesis
 - May or may not be stochastic (i.e., search process might still be deterministic)
 - NB: h can be deterministic (e.g., a Boolean function) or probabilistic

Probability: Basic Definitions and Axioms

- Sample Space (Ω): Range of a Random Variable X
- Probability Measure $Pr(*)$
 - Ω denotes a range of “events”; $X: \Omega$
 - Probability Pr, or P, is a measure over Ω
 - In a general sense, $Pr(X = x \in \Omega)$ is a measure of belief in $X = x$
 - $P(X = x) = 0$ or $P(X = x) = 1$: plain (aka categorical) beliefs (can’t be revised)
 - All other beliefs are subject to revision

- Kolmogorov Axioms
 - $\forall x \in \Omega : 0 \leq P(X = x) \leq 1$
 - $2. P(\Omega) = \sum_{x \in \Omega} P(X = x) = 1$
 - $3. \forall X_1, X_2 , \ldots \Rightarrow i \neq j \Rightarrow X_i \land X_j = \emptyset$
 - $P(\bigcup_{i} X_i) = \sum_{i} P(X_i)$

- Joint Probability: $P(X_1 \land X_2) = Probability of the Joint Event X_1 \land X_2$
- Independence: $P(X_1 \land X_2) = P(X_1) \cdot P(X_2)$
Bayes’s Theorem

- **Theorem**
 \[P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)} \]

- **\(P(h) \)** = Prior Probability of Hypothesis \(h \)
 - Measures initial beliefs (BK) before any information is obtained (hence prior)

- **\(P(D) \)** = Prior Probability of Training Data \(D \)
 - Measures probability of obtaining sample \(D \) (i.e., expresses \(\Omega \))

- **\(P(h \mid D) \)** = Probability of \(h \) Given \(D \)
 - \(\mid \) denotes conditioning - hence \(P(h \mid D) \) is a conditional (aka posterior) probability

- **\(P(D \mid h) \)** = Probability of \(D \) Given \(h \)
 - Measures probability of observing \(D \) given that \(h \) is correct (“generative” model)

- **\(P(h \land D) \)** = Joint Probability of \(h \) and \(D \)
 - Measures probability of observing \(D \) and of \(h \) being correct

Choosing Hypotheses

- **Bayes’s Theorem**
 \[P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)} \]

- **MAP Hypothesis**
 - Generally want most probable hypothesis given the training data
 - Define: \(\arg \max_{x \in \Omega} f(x) \) = the value of \(x \) in the sample space \(\Omega \) with the highest \(f(x) \)
 - Maximum a posteriori hypothesis, \(h_{\text{MAP}} \)
 \[h_{\text{MAP}} = \arg \max_{h \in \mathcal{H}} P(h \mid D) \]
 \[= \arg \max_{h \in \mathcal{H}} \frac{P(D \mid h)P(h)}{P(D)} \]
 \[= \arg \max_{h \in \mathcal{H}} P(D \mid h)P(h) \]

- **ML Hypothesis**
 - Assume that \(P(h_i) = P(h_j) \) for all pairs \(i, j \) (uniform priors, i.e., \(P_H \sim \text{Uniform} \))
 - Can further simplify and choose the maximum likelihood hypothesis, \(h_{\text{ML}} \)
 \[h_{\text{ML}} = \arg \max_{h \in \mathcal{H}} P(D \mid h) \]
Bayes’s Theorem: Query Answering (QA)

• Answering User Queries
 – Suppose we want to perform intelligent inferences over a database DB
 • Scenario 1: DB contains records (instances), some “labeled” with answers
 • Scenario 2: DB contains probabilities (annotations) over propositions
 – QA: an application of probabilistic inference

• QA Using Prior and Conditional Probabilities: Example
 – Query: Does patient have cancer or not?
 – Suppose: patient takes a lab test and result comes back positive
 • Correct + result in only 98% of the cases in which disease is actually present
 • Correct - result in only 97% of the cases in which disease is not present
 • Only 0.008 of the entire population has this cancer
 – \(\alpha \equiv \Pr(\text{false negative for } H_0 \equiv \text{Cancer}) = 0.02 \) (NB: for 1-point sample)
 – \(\beta \equiv \Pr(\text{false positive for } H_0 \equiv \text{Cancer}) = 0.03 \) (NB: for 1-point sample)
 – \(\Pr(\text{Cancer}) = 0.008 \) \(\Pr(\text{Cancer}) = 0.98 \) \(\Pr(\text{Cancer}) = 0.03 \)
 – \(\Pr(\text{Cancer}) = 0.92 \) \(\Pr(\text{Cancer}) = 0.03 \)
 – \(\Pr(\text{H}_0 \mid \text{Cancer}) = 0.0078 \), \(\Pr(\text{H}_0 \mid \text{Cancer}) = 0.0298 \Rightarrow \text{h}_{\text{MAP}} = \text{H}_A = \neg \text{Cancer} \)

Basic Formulas for Probabilities

• Product Rule (Alternative Statement of Bayes’s Theorem)
 \[P(A \mid B) = \frac{P(A \cdot B)}{P(B)} \]
 – Proof: requires axiomatic set theory, as does Bayes’s Theorem

• Sum Rule
 \[P(A \cup B) = P(A) + P(B) - P(A \cdot B) \]
 – Sketch of proof (immediate from axiomatic set theory)
 • Draw a Venn diagram of two sets denoting events A and B
 • Let \(A \cup B \) denote the event corresponding to \(A \cup B \)

• Theorem of Total Probability
 – Suppose events \(A_1, A_2, \ldots, A_n \) are mutually exclusive and exhaustive
 • Mutually exclusive: \(i \neq j \Rightarrow A_i \cap A_j = \emptyset \)
 • Exhaustive: \(\sum P(A_i) = 1 \)
 – Then \(P(B) = \sum P(B \mid A_i) P(A_i) \)
 – Proof: follows from product rule and 3rd Kolmogorov axiom
MAP and ML Hypotheses: A Pattern Recognition Framework

- Pattern Recognition Framework
 - Automated speech recognition (ASR), automated image recognition
 - Diagnosis

- Forward Problem: One Step in ML Estimation
 - Given: model \(h \), observations (data) \(D \)
 - Estimate: \(P(D \mid h) \), the “probability that the model generated the data”

- Backward Problem: Pattern Recognition / Prediction Step
 - Given: model \(h \), observations \(D \)
 - Maximize: \(P(h(X) = x \mid h, D) \) for a new \(X \) (i.e., find best \(x \))

- Forward-Backward (Learning) Problem
 - Given: model space \(H \), data \(D \)
 - Find: \(h \in H \) such that \(P(h \mid D) \) is maximized (i.e., MAP hypothesis)

- More Info
 - Emphasis on a particular \(H \) (the space of hidden Markov models)

Bayesian Learning Example: Unbiased Coin [1]

- Coin Flip
 - Sample space: \(\Omega = \{ \text{Head, Tail} \} \)
 - Scenario: given coin is either fair or has a 60% bias in favor of Head
 - \(h_1 \) = fair coin: \(P(\text{Head}) = 0.5 \)
 - \(h_2 \) = 60% bias towards Head: \(P(\text{Head}) = 0.6 \)
 - Objective: to decide between default (null) and alternative hypotheses

- A Priori (aka Prior) Distribution on \(H \)
 - \(P(h_1) = 0.75, P(h_2) = 0.25 \)
 - Reflects learning agent’s prior beliefs regarding \(H \)
 - Learning is revision of agent’s beliefs

- Collection of Evidence
 - First piece of evidence: \(d \) = a single coin toss, comes up Head
 - Q: What does the agent believe now?
 - A: Compute \(P(d) = P(d \mid h_1) P(h_1) + P(d \mid h_2) P(h_2) \)
Bayesian Learning Example: Unbiased Coin [2]

• Bayesian Inference: Compute $P(d) = P(d \mid h_1) P(h_1) + P(d \mid h_2) P(h_2)$
 - $P(Head) = 0.5 \times 0.75 + 0.6 \times 0.25 = 0.375 + 0.15 = 0.525$
 - This is the probability of the observation $d = \text{Head}$

• Bayesian Learning
 - Now apply Bayes’s Theorem
 - $P(h_1 \mid d) = P(d \mid h_1) P(h_1) / P(d) = 0.375 / 0.525 = 0.714$
 - $P(h_2 \mid d) = P(d \mid h_2) P(h_2) / P(d) = 0.15 / 0.525 = 0.286$
 - Belief has been revised downwards for h_1, upwards for h_2
 - The agent still thinks that the fair coin is the more likely hypothesis
 - Suppose we were to use the ML approach (i.e., assume equal priors)
 - Belief is revised upwards from 0.5 for h_1
 - Data then supports the bias coin better

• More Evidence: Sequence D of 100 coins with 70 heads and 30 tails
 - $P(D) = (0.5)^{70} \times (0.5)^{30} \times 0.75 + (0.6)^{70} \times (0.4)^{30} \times 0.25$
 - Now $P(h_1 \mid D) << P(h_2 \mid D)$

Brute Force MAP Hypothesis Learner

• Intuitive Idea: Produce Most Likely h Given Observed D

• Algorithm Find-MAP-Hypothesis (D)
 - 1. FOR each hypothesis $h \in H$
 - Calculate the conditional (i.e., posterior) probability:
 $$P(h \mid D) = \frac{P(D \mid h) P(h)}{P(D)}$$
 - 2. RETURN the hypothesis h_{MAP} with the highest conditional probability
 $$h_{\text{MAP}} = \arg\max_{h \in H} P(h \mid D)$$
Terminology

- **Evolutionary Computation (EC): Models Based on Natural Selection**
- **Genetic Algorithm (GA) Concepts**
 - **Individual**: single entity of model (corresponds to hypothesis)
 - **Population**: collection of entities in competition for survival
 - **Generation**: single application of selection and crossover operations
 - **Schema aka building block**: descriptor of GA population (e.g., 10**0**)
 - **Schema theorem**: representation of schema proportional to its relative fitness
- **Simple Genetic Algorithm (SGA) Steps**
 - **Selection**
 - Proportionate reproduction (aka roulette wheel): \(P(\text{individual}) \propto f(\text{individual}) \)
 - Tournament: let individuals compete in pairs or tuples; eliminate unfit ones
 - **Crossover**
 - Single-point: \(11101001000 \times 00001010101 \rightarrow \{ 11101010101, 00001001000 \} \)
 - Two-point: \(11101001000 \times 00001010101 \rightarrow \{ 11001011000, 01101001001 \} \)
 - Uniform: \(1110101000 \times 00001010101 \rightarrow \{ 10001000100, 01101011001 \} \)
 - **Mutation**: single-point (“bit flip”), multi-point

Summary Points

- **Evolutionary Computation**
 - **Motivation**: process of natural selection
 - **Limited population; individuals compete for membership**
 - **Method for parallelizing and stochastic search**
 - **Framework for problem solving**: search, optimization, learning
- **Prototypical (Simple) Genetic Algorithm (GA)**
 - **Steps**
 - Selection: reproduce individuals probabilistically, in proportion to fitness
 - Crossover: generate new individuals probabilistically, from pairs of “parents”
 - Mutation: modify structure of individual randomly
 - **How to represent hypotheses as individuals in GAs**
- **An Example: GA-Based Inductive Learning (GABIL)**
- **Schema Theorem: Propagation of Building Blocks**
- **Next Lecture: Genetic Programming, The Movie**