SVM Continued and Intro to Bayesian Learning:
Max a Posteriori and Max Likelihood Estimation

Thursday, 22 February 2007

William H. Hsu
Department of Computing and Information Sciences, KSU
http://www.kddresearch.org

Readings:
Sections 6.1-6.5, Mitchell

Lecture Outline

- Read Sections 6.1-6.5, Mitchell
- Overview of Bayesian Learning
 - Framework: using probabilistic criteria to generate hypotheses of all kinds
 - Probability: foundations
- Bayes’s Theorem
 - Definition of conditional (posterior) probability
 - Ramifications of Bayes’s Theorem
 - Answering probabilistic queries
 - MAP hypotheses
- Generating Maximum *A Posteriori (MAP)* Hypotheses
- Generating Maximum Likelihood Hypotheses
- Next Week: Sections 6.6-6.13, Mitchell; Roth; Pearl and Verma
 - More Bayesian learning: MDL, BOC, Gibbs, Simple (Naive) Bayes
 - Learning over text
Selection and Building Blocks

- **Restricted Case: Selection Only**
 - \(f(t) \) = average fitness of population at time \(t \)
 - \(m(s, t) \) = number of instances of schema \(s \) in population at time \(t \)
 - \(\bar{u}(s, t) \) = average fitness of instances of schema \(s \) at time \(t \)

- **Quantities of Interest**
 - Probability of selecting \(h \) in one selection step
 \[P(h) = \frac{f(h)}{\sum f(h)} \]
 - Probability of selecting an instance of \(s \) in one selection step
 \[P(h \in s) = \sum_{h: f(h)} \frac{f(h)}{f(t)} = \frac{\bar{u}(s, t)}{f(t)} \cdot m(s, t) \]
 - Expected number of instances of \(s \) after \(n \) selections
 \[E[m(s, t + 1)] \cdot \frac{\bar{u}(s, t)}{f(t)} \cdot m(s, t) \]

Bayesian Learning

- **Framework: Interpretations of Probability** [Cheeseman, 1985]
 - Bayesian subjectivist view
 - A measure of an agent's belief in a proposition
 - Proposition denoted by random variable (sample space: range)
 - E.g., \(P(\text{Outlook} = \text{Sunny}) = 0.8 \)
 - Frequentist view: probability is the frequency of observations of an event
 - Logicist view: probability is inferential evidence in favor of a proposition

- **Typical Applications**
 - HCI: learning natural language; intelligent displays; decision support
 - Approaches: prediction; sensor and data fusion (e.g., bioinformatics)

- **Prediction: Examples**
 - Measure relevant parameters: temperature, barometric pressure, wind speed
 - Make statement of the form \(P(\text{Tomorrow's-Weather} = \text{Rain}) = 0.5 \)
 - College admissions: \(P(\text{Acceptance}) = p \)
 - Plain beliefs: unconditional acceptance \((p = 1) \) or categorical rejection \((p = 0) \)
 - Conditional beliefs: depends on reviewer (use probabilistic model)
Two Roles for Bayesian Methods

- **Practical Learning Algorithms**
 - Naïve Bayes (aka simple Bayes)
 - Bayesian belief network (BBN) structure learning and parameter estimation
 - Combining prior knowledge (prior probabilities) with observed data
 - A way to incorporate background knowledge (BK), aka domain knowledge
 - Requires prior probabilities (e.g., annotated rules)

- **Useful Conceptual Framework**
 - Provides “gold standard” for evaluating other learning algorithms
 - Bayes Optimal Classifier (BOC)
 - Stochastic Bayesian learning: Markov chain Monte Carlo (MCMC)
 - Additional insight into Occam’s Razor (MDL)

Probabilistic Concepts versus Probabilistic Learning

- **Two Distinct Notions: Probabilistic Concepts, Probabilistic Learning**

 - **Probabilistic Concepts**
 - Learned concept is a function, $c: X \rightarrow [0, 1]$
 - $c(x)$, the target value, denotes the probability that the label 1 (i.e., True) is assigned to x
 - Previous learning theory is applicable (with some extensions)

 - **Probabilistic (i.e., Bayesian) Learning**
 - Use of a probabilistic criterion in selecting a hypothesis h
 - e.g., “most likely” h given observed data D: MAP hypothesis
 - e.g., h for which D is “most likely”: max likelihood (ML) hypothesis
 - May or may not be stochastic (i.e., search process might still be deterministic)
 - NB: h can be deterministic (e.g., a Boolean function) or probabilistic
Probability: Basic Definitions and Axioms

- Sample Space (Ω): Range of a Random Variable X
- Probability Measure $Pr(\cdot)$
 - Ω denotes a range of “events”; $X: \Omega$
 - Probability Pr, or P, is a measure over Ω
 - In a general sense, $Pr(X = x \in \Omega)$ is a measure of belief in $X = x$
 - $P(X = x) = 0$ or $P(X = x) = 1$: plain (aka categorical) beliefs (can’t be revised)
 - All other beliefs are subject to revision
- Kolmogorov Axioms
 - 1. $\forall x \in \Omega : 0 \leq P(X = x) \leq 1$
 - 2. $P(\Omega) = \sum_{x \in \Omega} P(X = x) = 1$
 - 3. $\forall X_1, X_2, \ldots, x_i \neq j \Rightarrow X_i \land X_j = \emptyset$.
 - $P(\bigcup_{i=1}^{\infty} X_i) = \sum_{i=1}^{\infty} P(X_i)$
- Joint Probability: $P(X_1 \land X_2) =$ Probability of the Joint Event $X_1 \land X_2$
- Independence: $P(X_1 \land X_2) = P(X_1) \cdot P(X_2)$

Bayes’s Theorem

- Theorem
 - $P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)} = \frac{P(h \land D)}{P(D)}$
- $P(h)$ = Prior Probability of Hypothesis h
 - Measures initial beliefs (BK) before any information is obtained (hence prior)
- $P(D)$ = Prior Probability of Training Data D
 - Measures probability of obtaining sample D (i.e., expresses D)
- $P(h \mid D)$ = Probability of h Given D
 - \mid denotes conditioning - hence $P(h \mid D)$ is a conditional (aka posterior) probability
- $P(D \mid h)$ = Probability of D Given h
 - Measures probability of observing D given that h is correct (“generative” model)
- $P(h \land D)$ = Joint Probability of h and D
 - Measures probability of observing D and of h being correct
Choosing Hypotheses

- **Bayes’s Theorem**
 \[
P(h | D) = \frac{P(D | h) p(h)}{P(D)} \]
 where \(h \) is a hypothesis and \(D \) is the data.

- **MAP Hypothesis**
 - Generally want most probable hypothesis given the training data.
 - Define: \(\arg\max_{h \in O} f(x) \) = the value of \(x \) in the sample space \(O \) with the highest \(f(x) \).
 - Maximum a posteriori hypothesis, \(h_{MAP} \):
 \[
 h_{MAP} = \arg\max_{h \in O} P(h | D)
 = \arg\max_{h \in O} \frac{P(D | h) p(h)}{P(D)}
 = \arg\max_{h \in O} P(D | h) p(h)
 \]

- **ML Hypothesis**
 - Assume that \(p(h_i) = p(h_j) \) for all pairs \(i, j \) (uniform priors, i.e., \(P_H \sim \text{Uniform} \)).
 - Can further simplify and choose the maximum likelihood hypothesis, \(h_{ML} \):
 \[
 h_{ML} = \arg\max_{h \in O} P(D | h)
 \]

Bayes’s Theorem: Query Answering (QA)

- **Answering User Queries**
 - Suppose we want to perform intelligent inferences over a database \(DB \)
 - Scenario 1: \(DB \) contains records (instances), some “labeled” with answers
 - Scenario 2: \(DB \) contains probabilities (annotations) over propositions
 - QA: an application of probabilistic inference

- **QA Using Prior and Conditional Probabilities: Example**
 - Query: Does patient have cancer or not?
 - Suppose: patient takes a lab test and result comes back positive
 - Correct + result in only 98% of the cases in which disease is actually present
 - Correct - result in only 97% of the cases in which disease is not present
 - Only 0.008 of the entire population has this cancer
 - \(\alpha = P(\text{false negative for } H_0 = \text{Cancer}) = 0.02 \) (NB: for 1-point sample)
 - \(\beta = P(\text{false positive for } H_0 = \text{Cancer}) = 0.03 \) (NB: for 1-point sample)
 - \[
 P(\text{Cancer}) = 0.008 \quad P(+) | \text{Cancer} = 0.98 \quad P(+) | \neg \text{Cancer} = 0.03
 P(\neg \text{Cancer}) = 0.992 \quad P(-) | \text{Cancer} = 0.02 \quad P(-) | \neg \text{Cancer} = 0.97

 \[
 P(+) | H_0 \) P(H_0) = 0.0078, P(+) | H_1 \) P(H_1) = 0.0298 \Rightarrow h_{MAP} = H_1 = \neg \text{Cancer}
 \]
Basic Formulas for Probabilities

- **Product Rule** (Alternative Statement of Bayes’s Theorem)
 \[P(A \mid B) = \frac{P(A \land B)}{P(B)} \]
 - Proof: requires axiomatic set theory, as does Bayes’s Theorem

- **Sum Rule**
 \[P(A \lor B) = P(A) + P(B) - P(A \land B) \]
 - Sketch of proof (immediate from axiomatic set theory)
 - Draw a Venn diagram of two sets denoting events A and B
 - Let \(A \lor B \) denote the event corresponding to \(A \lor B \)

- **Theorem of Total Probability**
 - Suppose events \(A_1, A_2, \ldots, A_n \) are mutually exclusive and exhaustive
 - **Mutually exclusive:** \(i \neq j \Rightarrow A_i \land A_j = \emptyset \)
 - **Exhaustive:** \(\sum P(A_j) = 1 \)
 - Then
 \[P(B) = \sum_{i} P(B \mid A_i) \cdot P(A_i) \]
 - Proof: follows from product rule and 3rd Kolmogorov axiom

MAP and ML Hypotheses: A Pattern Recognition Framework

- **Pattern Recognition Framework**
 - Automated speech recognition (ASR), automated image recognition
 - Diagnosis

- **Forward Problem:** One Step in ML Estimation
 - Given: model \(h \), observations (data) \(D \)
 - Estimate: \(P(D \mid h) \), the “probability that the model generated the data”

- **Backward Problem:** Pattern Recognition / Prediction Step
 - Given: model \(h \), observations \(D \)
 - Maximize: \(P(h(X) = x \mid h, D) \) for a new \(X \) (i.e., find best \(x \))

- **Forward-Backward (Learning) Problem**
 - Given: model space \(H \), data \(D \)
 - Find: \(h \in H \) such that \(P(h \mid D) \) is maximized (i.e., MAP hypothesis)

- **More Info**
 - Emphasis on a particular \(H \) (the space of hidden Markov models)
Bayesian Learning Example: Unbiased Coin [1]

• Coin Flip
 – Sample space: \(\Omega = \{ \text{Head}, \text{Tail} \} \)
 – Scenario: given coin is either fair or has a 60% bias in favor of \text{Head}
 • \(h_1 \equiv \text{fair coin}: P(\text{Head}) = 0.5 \)
 • \(h_2 \equiv 60\% \text{ bias towards Head}: P(\text{Head}) = 0.6 \)
 – Objective: to decide between default (null) and alternative hypotheses

• \text{A Priori} (aka \text{Prior}) Distribution on \(H \)
 – \(P(h_1) = 0.75, P(h_2) = 0.25 \)
 – Reflects learning agent’s \text{prior beliefs} regarding \(H \)
 – Learning is revision of agent’s beliefs

• Collection of Evidence
 – First piece of evidence: \(d \equiv \) a single coin toss, comes up \text{Head}
 – Q: What does the agent believe now?
 – A: Compute \(P(d) = P(d | h_1) P(h_1) + P(d | h_2) P(h_2) \)

\(P(\text{Head}) = 0.5 \times 0.75 + 0.6 \times 0.25 = 0.375 + 0.15 = 0.525 \)

• Bayesian Learning
 – Now apply Bayes’s Theorem
 • \(P(h_1 | d) = P(d | h_1) P(h_1) / P(d) = 0.375 / 0.525 = 0.714 \)
 • \(P(h_2 | d) = P(d | h_2) P(h_2) / P(d) = 0.15 / 0.525 = 0.286 \)
 • \text{Belief has been revised downwards for} \(h_1 \), \text{upwards for} \(h_2 \)
 • The agent still thinks that the fair coin is the more likely hypothesis
 – Suppose we were to use the ML approach (i.e., assume equal priors)
 • Belief is revised upwards from 0.5 for \(h_1 \)
 • Data then supports the bias coin better

Bayesian Learning Example: Unbiased Coin [2]

• Bayesian Inference: Compute \(P(d) = P(d | h_1) P(h_1) + P(d | h_2) P(h_2) \)
 – \(P(\text{Head}) = 0.5 \times 0.75 + 0.6 \times 0.25 = 0.375 + 0.15 = 0.525 \)
 – This is the probability of the observation \(d = \text{Head} \)

• Bayesian Learning
 – Now apply Bayes’s Theorem
 • \(P(h_1 | d) = P(d | h_1) P(h_1) / P(d) = 0.375 / 0.525 = 0.714 \)
 • \(P(h_2 | d) = P(d | h_2) P(h_2) / P(d) = 0.15 / 0.525 = 0.286 \)
 • \text{Belief has been revised downwards for} \(h_1 \), \text{upwards for} \(h_2 \)
 • The agent still thinks that the fair coin is the more likely hypothesis
 – Suppose we were to use the ML approach (i.e., assume equal priors)
 • Belief is revised upwards from 0.5 for \(h_1 \)
 • Data then supports the bias coin better

• More Evidence: Sequence \(D \) of 100 coins with 70 heads and 30 tails
 – \(P(D) = (0.5)^{50} \times (0.5)^{50} \times 0.75 + (0.6)^{70} \times (0.4)^{30} \times 0.25 \)
 – Now \(P(h_1 | d) << P(h_2 | d) \)
Brute Force MAP Hypothesis Learner

- **Intuitive Idea:** Produce Most Likely h Given Observed D
- **Algorithm Find-MAP-Hypothesis (D)**
 1. FOR each hypothesis $h \in H$

 Calculate the conditional (i.e., posterior) probability:
 \[
 P(h \mid D) = \frac{P(D \mid h) P(h)}{P(D)}
 \]
 2. RETURN the hypothesis h_{MAP} with the highest conditional probability
 \[
 h_{MAP} = \arg \max_{h \in H} P(h \mid D)
 \]

Relation to Concept Learning

- **Usual Concept Learning Task**
 - Instance space X
 - Hypothesis space H
 - Training examples D
- **Consider Find-S Algorithm**
 - Given: D
 - Return: most specific h in the version space $V_{S,H,D}$
- **MAP and Concept Learning**
 - Bayes’s Rule: Application of Bayes’s Theorem
 - What would Bayes’s Rule produce as the MAP hypothesis?
- **Does Find-S Output A MAP Hypothesis?**
Bayesian Concept Learning and Version Spaces

- Assumptions
 - Fixed set of instances \(<x_1, x_2, ..., x_m>\)
 - Let \(D\) denote the set of classifications: \(D = <c(x_1), c(x_2), ..., c(x_m)>\)

- Choose \(P(D | h)\)
 - \(P(D | h) = 1\) if \(h\) consistent with \(D\) (i.e., \(\forall x, h(x) = c(x)\))
 - \(P(D | h) = 0\) otherwise

- Choose \(P(h) \sim \text{Uniform}\)
 - Uniform distribution: \(P(h) = \frac{1}{|H|}\)
 - Uniform priors correspond to “no background knowledge” about \(h\)
 - Recall: maximum entropy

- MAP Hypothesis

\[
P(h|D) = \begin{cases}
\frac{1}{|VS_D|} & \text{if } h \text{ is consistent with } D \\
0 & \text{otherwise}
\end{cases}
\]

Evolution of Posterior Probabilities

- Start with Uniform Priors
 - Equal probabilities assigned to each hypothesis
 - Maximum uncertainty (entropy), minimum prior information

 \[
P(h) \rightarrow P(h|D_1) \rightarrow P(h|D_1, D_2)
\]

- Evidential Inference
 - Introduce data (evidence) \(D_i\): belief revision occurs
 - Learning agent revises conditional probability of inconsistent hypotheses to 0
 - Posterior probabilities for remaining \(h \in VS_{H,D}\) revised upward
 - Add more data (evidence) \(D_j\): further belief revision
Characterizing Learning Algorithms by Equivalent MAP Learners

- **Inductive System**
 - Training Examples D
 - Hypothesis Space H
 - Candidate Elimination Algorithm
 - Output hypotheses

- **Equivalent Bayesian Inference System**
 - Training Examples D
 - Hypothesis Space H
 - Prior knowledge made explicit
 - $P(h) \sim \text{Uniform}$
 - $P(D \mid h) = \delta(h(\cdot), c(\cdot))$
 - Brute Force MAP Learner
 - Output hypotheses

Most Probable Classification of New Instances

- **MAP and MLE: Limitations**
 - Problem so far: “find the most likely hypothesis given the data”
 - Sometimes we just want the best classification of a new instance x, given D

- **A Solution Method**
 - Find best (MAP) h, use it to classify
 - *This may not be optimal, though!*
 - Analogy
 - Estimating a distribution using the mode versus the integral
 - One finds the maximum, the other the area

- **Refined Objective**
 - Want to determine the most probable classification
 - Need to combine the prediction of all hypotheses
 - Predictions must be weighted by their conditional probabilities
 - Result: Bayes Optimal Classifier (next time...)
Terminology

- Introduction to Bayesian Learning
 - Probability foundations
 - Definitions: subjectivist, frequentist, logicist
 - (3) Kolmogorov axioms
- Bayes’s Theorem
 - Prior probability of an event
 - Joint probability of an event
 - Conditional (posterior) probability of an event
- Maximum A Posteriori (MAP) and Maximum Likelihood (ML) Hypotheses
 - MAP hypothesis: highest conditional probability given observations (data)
 - ML: highest likelihood of generating the observed data
 - ML estimation (MLE): estimating parameters to find ML hypothesis
- Bayesian Inference: Computing Conditional Probabilities (CPs) in A Model
 - Bayesian Learning: Searching Model (Hypothesis) Space using CPs

Summary Points

- Introduction to Bayesian Learning
 - Framework: using probabilistic criteria to search \(H \)
 - Probability foundations
 - Definitions: subjectivist, objectivist: Bayesian, frequentist, logicist
 - Kolmogorov axioms
- Bayes’s Theorem
 - Definition of conditional (posterior) probability
 - Product rule
- Maximum A Posteriori (MAP) and Maximum Likelihood (ML) Hypotheses
 - Bayes’s Rule and MAP
 - Uniform priors: allow use of MLE to generate MAP hypotheses
 - Relation to version spaces, candidate elimination
- Next Week: 6.6-6.10, Mitchell; Chapter 14-15, Russell and Norvig; Roth
 - More Bayesian learning: MDL, BOC, Gibbs, Simple (Naïve) Bayes
 - Learning over text