Bayes’s Theorem, MAP, and Maximum Likelihood Hypotheses

Friday, 23 February 2007

William H. Hsu
Department of Computing and Information Sciences, KSU
http://www.kddresearch.org

Readings:
Sections 6.1-6.5, Mitchell

Lecture Outline

• Read Sections 6.1-6.5, Mitchell
• Overview of Bayesian Learning
 – Framework: using probabilistic criteria to generate hypotheses of all kinds
 – Probability: foundations
• Bayes’s Theorem
 – Definition of conditional (posterior) probability
 – Ramifications of Bayes’s Theorem
 • Answering probabilistic queries
 • MAP hypotheses
• Generating Maximum A Posteriori (MAP) Hypotheses
• Generating Maximum Likelihood Hypotheses
• Next Week: Sections 6.6-6.13, Mitchell; Roth; Pearl and Verma
 – More Bayesian learning: MDL, BOC, Gibbs, Simple (Naive) Bayes
 – Learning over text
Bayesian Learning

- Framework: Interpretations of Probability [Cheeseman, 1985]
 - Bayesian subjectivist view
 - A measure of an agent's belief in a proposition
 - Proposition denoted by random variable (sample space: range)
 - e.g., $\Pr(\text{Outlook} = \text{Sunny}) = 0.8$
 - Frequentist view: probability is the frequency of observations of an event
 - Logicist view: probability is inferential evidence in favor of a proposition

- Typical Applications
 - HCI: learning natural language; intelligent displays; decision support
 - Approaches: prediction; sensor and data fusion (e.g., bioinformatics)

- Prediction: Examples
 - Measure relevant parameters: temperature, barometric pressure, wind speed
 - Make statement of the form $\Pr(\text{Tomorrow's-Weather} = \text{Rain}) = 0.5$
 - College admissions: $\Pr(\text{Acceptance}) \equiv p$
 - Plain beliefs: unconditional acceptance ($p = 1$) or categorical rejection ($p = 0$)
 - Conditional beliefs: depends on reviewer (use probabilistic model)

Two Roles for Bayesian Methods

- Practical Learning Algorithms
 - Naïve Bayes (aka simple Bayes)
 - Bayesian belief network (BBN) structure learning and parameter estimation
 - Combining prior knowledge (prior probabilities) with observed data
 - A way to incorporate background knowledge (BK), aka domain knowledge
 - Requires prior probabilities (e.g., annotated rules)

- Useful Conceptual Framework
 - Provides "gold standard" for evaluating other learning algorithms
 - Bayes Optimal Classifier (BOC)
 - Stochastic Bayesian learning: Markov chain Monte Carlo (MCMC)
 - Additional insight into Occam's Razor (MDL)
Probabilistic Concepts versus Probabilistic Learning

• Two Distinct Notions: Probabilistic Concepts, Probabilistic Learning

• Probabilistic Concepts
 – Learned concept is a function, \(c: X \rightarrow [0, 1] \)
 – \(c(x) \), the target value, denotes the probability that the label 1 (i.e., True) is assigned to \(x \)
 – Previous learning theory is applicable (with some extensions)

• Probabilistic (i.e., Bayesian) Learning
 – Use of a probabilistic criterion in selecting a hypothesis \(h \)
 • e.g., “most likely” \(h \) given observed data \(D \): MAP hypothesis
 • e.g., \(h \) for which \(D \) is “most likely”: max likelihood (ML) hypothesis
 • May or may not be stochastic (i.e., search process might still be deterministic)
 – NB: \(h \) can be deterministic (e.g., a Boolean function) or probabilistic

Probability: Basic Definitions and Axioms

• Sample Space (\(\Omega \)): Range of a Random Variable \(X \)

• Probability Measure \(Pr(*) \)
 – \(\Omega \) denotes a range of “events”; \(X: \Omega \)
 – Probability \(Pr \), or \(P \), is a measure over
 – In a general sense, \(Pr(X = x \in \Omega) \) is a measure of belief in \(X = x \)
 • \(P(X = x) = 0 \) or \(P(X = x) = 1 \): plain (aka categorical) beliefs (can’t be revised)
 • All other beliefs are subject to revision

• Kolmogorov Axioms
 1. \(\forall x \in \Omega: 0 \leq P(X = x) \leq 1 \)
 2. \(P(\Omega) = \sum_{x \in \Omega} P(X = x) = 1 \)
 3. \(\forall X_1, X_2, \ldots, i \neq j \Rightarrow X_i \land X_j = \emptyset \).

 \[
P\left(\bigcup_{i} X_i\right) = \sum_{i} P(X_i)
 \]

• Joint Probability: \(P(X_1 \land X_2) = \text{Probability of the Joint Event } X_1 \land X_2 \)

• Independence: \(P(X_1 \land X_2) = P(X_1) \cdot P(X_2) \)
Bayes’s Theorem

- **Theorem**
 \[P(h | D) = \frac{P(D | h) P(h)}{P(D)} = \frac{P(h \land D)}{P(D)} \]

- **\(P(h) \)** = Prior Probability of Hypothesis \(h \)
 - Measures initial beliefs (BK) before any information is obtained (hence prior)

- **\(P(D) \)** = Prior Probability of Training Data \(D \)
 - Measures probability of obtaining sample \(D \) (i.e., expresses \(D \))

- **\(P(h | D) \)** = Probability of \(h \) Given \(D \)
 - \(| \) denotes conditioning - hence \(P(h | D) \) is a conditional (aka posterior) probability

- **\(P(D | h) \)** = Probability of \(D \) Given \(h \)
 - Measures probability of observing \(D \) given that \(h \) is correct (“generative” model)

- **\(P(h \land D) \)** = Joint Probability of \(h \) and \(D \)
 - Measures probability of observing \(D \) and of \(h \) being correct

Choosing Hypotheses

- **Bayes’s Theorem**
 \[P(h | D) = \frac{P(D | h) P(h)}{P(D)} = \frac{P(h \land D)}{P(D)} \]

- **MAP Hypothesis**
 - Generally want most probable hypothesis given the training data
 - Define: \[\arg \max_{x \in \Omega} f(x) \] = the value of \(x \) in the sample space \(\Omega \) with the highest \(f(x) \)
 - Maximum a posteriori hypothesis, \(h_{MAP} \)
 \[h_{MAP} = \arg \max_{h} P(h | D) = \arg \max_{h} \frac{P(D | h) P(h)}{P(D)} = \arg \max_{h} P(D | h) P(h) \]

- **ML Hypothesis**
 - Assume that \(p(h_j) = p(h_i) \) for all pairs \(i, j \) (uniform priors, i.e., \(P_h \sim \text{Uniform} \))
 - Can further simplify and choose the maximum likelihood hypothesis, \(h_{ML} \)
 \[h_{ML} = \arg \max_{h} P(D | h) \]
Bayes’s Theorem: Query Answering (QA)

- **Answering User Queries**
 - Suppose we want to perform intelligent inferences over a database DB
 - Scenario 1: DB contains records (instances), some "labeled" with answers
 - Scenario 2: DB contains probabilities (annotations) over propositions
 - QA: an application of probabilistic inference

- **QA Using Prior and Conditional Probabilities: Example**
 - Query: *Does patient have cancer or not?*
 - Suppose: patient takes a lab test and result comes back positive
 - Correct + result in only 98% of the cases in which disease is actually present
 - Correct - result in only 97% of the cases in which disease is not present
 - Only 0.008 of the entire population has this cancer
 - $\alpha = P($false negative for $H_0 = \text{Cancer}) = 0.02$ (NB: for 1-point sample)
 - $\beta = P($false positive for $H_0 = \text{Cancer}) = 0.03$ (NB: for 1-point sample)
 - $P(+ | H_0) = 0.008$, $P(+ | H_A) P(H_A) = 0.0298 \Rightarrow h_{MAP} = H_A = \neg \text{Cancer}$

Basic Formulas for Probabilities

- **Product Rule** (Alternative Statement of Bayes’s Theorem)
 - $P(A \land B) = \frac{P(A \land B)}{P(B)}$
 - Proof: requires axiomatic set theory, as does Bayes’s Theorem

- **Sum Rule**
 - $P(A \lor B) = P(A) + P(B) - P(A \land B)$
 - Sketch of proof (immediate from axiomatic set theory)
 - Draw a Venn diagram of two sets denoting events A and B
 - Let $A \lor B$ denote the event corresponding to $A \lor B$...

- **Theorem of Total Probability**
 - Suppose events A_1, A_2, \ldots, A_n are mutually exclusive and exhaustive
 - Mutually exclusive: $i \neq j \Rightarrow A_i \land A_j = \emptyset$
 - Exhaustive: $\sum P(A_j) = 1$
 - Then $P(B) = \sum P(B | A_j) P(A_j)$
 - Proof: follows from product rule and 3rd Kolmogorov axiom
MAP and ML Hypotheses:
A Pattern Recognition Framework

• **Pattern Recognition Framework**
 – Automated speech recognition (ASR), automated image recognition
 – Diagnosis

• **Forward Problem:** One Step in ML Estimation
 – Given: model \(h \), observations (data) \(D \)
 – Estimate: \(P(D \mid h) \), the “probability that the model generated the data”

• **Backward Problem:** Pattern Recognition / Prediction Step
 – Given: model \(h \), observations \(D \)
 – Maximize: \(P(h(X) = x \mid h, D) \) for a new \(X \) (i.e., find best \(x \))

• **Forward-Backward (Learning) Problem**
 – Given: model space \(H \), data \(D \)
 – Find: \(h \in H \) such that \(P(h \mid D) \) is maximized (i.e., MAP hypothesis)

• **More Info**
 – Emphasis on a particular \(H \) (the space of hidden Markov models)

Bayesian Learning Example:
Unbiased Coin [1]

• **Coin Flip**
 – Sample space: \(\Omega = \{\text{Head, Tail}\} \)
 – Scenario: given coin is either fair or has a 60% bias in favor of Head
 • \(h_1 = \) fair coin: \(P(\text{Head}) = 0.5 \)
 • \(h_2 = 60\% \) bias towards Head: \(P(\text{Head}) = 0.6 \)
 – Objective: to decide between default (null) and alternative hypotheses

• **A Priori (aka Prior)** Distribution on \(H \)
 – \(P(h_1) = 0.75, P(h_2) = 0.25 \)
 – Reflects learning agent’s prior beliefs regarding \(H \)
 – Learning is revision of agent’s beliefs

• **Collection of Evidence**
 – First piece of evidence: \(d = \) a single coin toss, comes up Head
 – Q: What does the agent believe now?
 – A: Compute \(P(d) = P(d \mid h_1) P(h_1) + P(d \mid h_2) P(h_2) \)
Bayesian Learning Example: Unbiased Coin [2]

- Bayesian Inference: Compute $P(d) = P(d \mid h_1) P(h_1) + P(d \mid h_2) P(h_2)$

 \[P(\text{Head}) = 0.5 \times 0.75 + 0.6 \times 0.25 = 0.375 + 0.15 = 0.525 \]

 - This is the probability of the observation $d = \text{Head}$

- Bayesian Learning

 - Now apply Bayes’s Theorem

 \[P(h_1 \mid d) = \frac{P(d \mid h_1) P(h_1)}{P(d)} = \frac{0.375 \times 0.75}{0.525} = 0.714 \]

 \[P(h_2 \mid d) = \frac{P(d \mid h_2) P(h_2)}{P(d)} = \frac{0.15 \times 0.25}{0.525} = 0.286 \]

 - Belief has been revised downwards for h_1, upwards for h_2

 - The agent still thinks that the fair coin is the more likely hypothesis

 - Suppose we were to use the ML approach (i.e., assume equal priors)

 - Belief is revised upwards from 0.5 for h_1

 - Data then supports the bias coin better

- More Evidence: Sequence D of 100 coins with 70 heads and 30 tails

 \[P(D) = (0.5)^{70} \times (0.5)^{30} \times 0.75 + (0.6)^{70} \times (0.4)^{30} \times 0.25 \]

 - Now $P(h_1 \mid d) \ll P(h_2 \mid d)$

Brute Force MAP Hypothesis Learner

- Intuitive Idea: Produce Most Likely h Given Observed D

- Algorithm Find-MAP-Hypothesis (D)

 - 1. FOR each hypothesis $h \in H$ Calculate the conditional (i.e., posterior) probability:

 \[P(h \mid D) = \frac{P(D \mid h) P(h)}{P(D)} \]

 - 2. RETURN the hypothesis h_{MAP} with the highest conditional probability

 \[h_{\text{MAP}} = \arg \max_{h \in H} P(h \mid D) \]
Relation to Concept Learning

• Usual Concept Learning Task
 – Instance space \(X \)
 – Hypothesis space \(H \)
 – Training examples \(D \)

• Consider \textit{Find-S} Algorithm
 – Given: \(D \)
 – Return: most specific \(h \) in the version space \(\text{VS}_{H,D} \)

• MAP and Concept Learning
 – Bayes’s Rule: Application of Bayes’s Theorem
 – What would Bayes’s Rule produce as the MAP hypothesis?

• Does \textit{Find-S} Output A MAP Hypothesis?

Bayesian Concept Learning and Version Spaces

• Assumptions
 – Fixed set of instances \(<x_1, x_2, \ldots, x_m>\)
 – Let \(D \) denote the set of classifications: \(D = <c(x_1), c(x_2), \ldots, c(x_m)> \)

• Choose \(P(D \mid h) \)
 – \(P(D \mid h) = 1 \) if \(h \) consistent with \(D \) (i.e., \(\forall x_i . h(x_i) = c(x_i) \))
 – \(P(D \mid h) = 0 \) otherwise

• Choose \(P(h) \sim \text{Uniform} \)
 – Uniform distribution: \(P(h) = \frac{1}{|H|} \)
 – Uniform priors correspond to “no background knowledge” about \(h \)
 – Recall: maximum entropy

• MAP Hypothesis
 \[
 P(h \mid D) = \begin{cases}
 \frac{1}{|\text{VS}_{H,D}|} & \text{if } h \text{ is consistent with } D \\
 0 & \text{otherwise}
 \end{cases}
 \]
Evolution of Posterior Probabilities

- **Start with Uniform Priors**
 - Equal probabilities assigned to each hypothesis
 - Maximum uncertainty (entropy), minimum prior information

- **Evidential Inference**
 - Introduce data (evidence) D_1: belief revision occurs
 - Learning agent revises conditional probability of inconsistent hypotheses to 0
 - Posterior probabilities for remaining $h \in \mathcal{H}$ revised upward
 - Add more data (evidence) D_2: further belief revision

Characterizing Learning Algorithms by Equivalent MAP Learners

- Inductive System
 - Candidate Elimination Algorithm
 - Output hypotheses

- Equivalent Bayesian Inference System
 - Brute Force MAP Learner
 - Output hypotheses

$P(h) \sim \text{Uniform}$
$P(D \mid h) = \delta(h(+), c(+))$

Prior knowledge made explicit
Problem Definition
- Target function: any real-valued function \(f \)
- Training examples \(\langle x_i, y_i \rangle \) where \(y_i \) is noisy training value
 - \(y_i = f(x_i) + e_i \)
 - \(e_i \) is random variable (noise) i.i.d. ~ Normal \((0, \sigma)\), aka Gaussian noise
- Objective: approximate \(f \) as closely as possible

Solution
- Maximum likelihood hypothesis \(h_{ML} \)
- Minimizes sum of squared errors (SSE)

\[
h_{ML} = \arg \min_{h} \sum_{i=1}^{n} (d_i - h(x_i))^2
\]

Derivation of Least Squares Solution
- Assume noise is Gaussian (prior knowledge)
- Max likelihood solution: \(h_{ML} = \arg \max_{h} p(D \mid h) \)

\[
h_{ML} = \arg \max_{h} \prod_{i=1}^{n} p(d_i \mid h)
\]

\[
= \arg \max_{h} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(d_i - h(x_i))^2}{2\sigma^2}}
\]

Problem: Computing Exponents, Comparing Reals - Expensive!

Solution: Maximize Log Prob

\[
h_{ML} = \arg \max_{h} \sum_{i=1}^{n} \ln \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) - \frac{1}{2\sigma^2} (d_i - h(x_i))^2
\]

\[
= \arg \max_{h} \sum_{i=1}^{n} \frac{1}{2\sigma^2} (d_i - h(x_i))^2
\]

\[
= \arg \max_{h} \sum_{i=1}^{n} - (d_i - h(x_i))^2
\]

\[
= \arg \min_{h} \sum_{i=1}^{n} (d_i - h(x_i))^2
\]
Learning to Predict Probabilities

• Application: Predicting Survival Probability from Patient Data

Problem Definition

– Given training examples \(<x, d>_i\), where \(d_i \in \{0, 1\}\)
– Want to train neural network to output a probability given \(x_i\) (not a 0 or 1)

• Maximum Likelihood Estimator (MLE)

– In this case can show:

\[
\Delta \omega_{\text{start-layer,end-layer}} = \nabla \omega_{\text{start-layer,end-layer}} \cdot \frac{\partial}{\partial \omega_{\text{start-layer,end-layer}}} \sum_{i=1}^{N} \left[d_i \ln h(x_i) + (1 - d_i) \ln (1 - h(x_i)) \right]
\]

Most Probable Classification of New Instances

• MAP and MLE: Limitations

– Problem so far: “find the most likely hypothesis given the data”
– Sometimes we just want the best classification of a new instance \(x\), given \(D\)

• A Solution Method

– Find best (MAP) \(h\), use it to classify
– \textit{This may not be optimal, though!}
– Analogy
 – Estimating a distribution using the mode versus the integral
 – One finds the maximum, the other the area

• Refined Objective

– Want to determine the most probable classification
– Need to combine the prediction of all hypotheses
– Predictions must be weighted by their conditional probabilities
– Result: Bayes Optimal Classifier (next time…)
Terminology

• Introduction to Bayesian Learning
 – Probability foundations
 • Definitions: subjectivist, frequentist, logicist
 • (3) Kolmogorov axioms
 – Bayes's Theorem
 – Prior probability of an event
 – Joint probability of an event
 – Conditional (posterior) probability of an event

• Maximum A Posteriori (MAP) and Maximum Likelihood (ML) Hypotheses
 – MAP hypothesis: highest conditional probability given observations (data)
 – ML: highest likelihood of generating the observed data
 – ML estimation (MLE): estimating parameters to find ML hypothesis

• Bayesian Inference: Computing Conditional Probabilities (CPs) in A Model
• Bayesian Learning: Searching Model (Hypothesis) Space using CPs

Summary Points

• Introduction to Bayesian Learning
 – Framework: using probabilistic criteria to search H
 – Probability foundations
 • Definitions: subjectivist, objectivist; Bayesian, frequentist, logicist
 • Kolmogorov axioms
 – Bayes’s Theorem
 – Definition of conditional (posterior) probability
 – Product rule
 – Maximum A Posteriori (MAP) and Maximum Likelihood (ML) Hypotheses
 – Bayes’s Rule and MAP
 – Uniform priors: allow use of MLE to generate MAP hypotheses
 – Relation to version spaces, candidate elimination

• Next Week: 6.6-6.10, Mitchell; Chapter 14-15, Russell and Norvig; Roth
 – More Bayesian learning: MDL, BOC, Gibbs, Simple (Naïve) Bayes
 – Learning over text