Lecture 06 of 42

Bayes’s Theorem, MAP, and Maximum Likelihood Hypotheses

Monday, 04 February 2008

William H. Hsu
Department of Computing and Information Sciences, KSU
http://www.kddresearch.org

Readings:
Sections 6.1-6.5, Mitchell

Lecture Outline

- Read Sections 6.4, Han & Kamber (2006)
- Overview of Bayesian Learning
 - Framework: using probabilistic criteria to generate hypotheses of all kinds
 - Probability: foundations
- Bayes’s Theorem
 - Definition of conditional (posterior) probability
 - Ramifications of Bayes’s Theorem
 - Answering probabilistic queries
 - MAP hypotheses
- Generating Maximum A Posteriori (MAP) Hypotheses
- Generating Maximum Likelihood Hypotheses
- Rest of this Week: 6.4 – 6.5, Han & Kamber, Chapter 6 Mitchell
 - More Bayesian learning: MDL, BOC, Gibbs, Simple (Naïve) Bayes
 - Learning over text
Bayesian Learning

- Framework: Interpretations of Probability [Cheeseman, 1985]
 - Bayesian subjective view
 - A measure of an agent's belief in a proposition
 - Proposition denoted by random variable (sample space: range)
 - e.g., \(\Pr(\text{Outlook} = \text{Sunny}) = 0.8 \)
 - Frequentist view: probability is the frequency of observations of an event
 - Logicist view: probability is inferential evidence in favor of a proposition

- Typical Applications
 - HCI: learning natural language; intelligent displays; decision support
 - Approaches: prediction; sensor and data fusion (e.g., bioinformatics)

- Prediction: Examples
 - Measure relevant parameters: temperature, barometric pressure, wind speed
 - Make statement of the form \(\Pr(\text{Tomorrow's-Weather} = \text{Rain}) = 0.5 \)
 - College admissions: \(\Pr(\text{Acceptance}) = p \)
 - Plain beliefs: unconditional acceptance \((p = 1) \) or categorical rejection \((p = 0) \)
 - Conditional beliefs: depends on reviewer (use probabilistic model)

Two Roles for Bayesian Methods

- Practical Learning Algorithms
 - Naïve Bayes (aka simple Bayes)
 - Bayesian belief network (BBN) structure learning and parameter estimation
 - Combining prior knowledge (prior probabilities) with observed data
 - A way to incorporate background knowledge (BK), aka domain knowledge
 - Requires prior probabilities (e.g., annotated rules)

- Useful Conceptual Framework
 - Provides "gold standard" for evaluating other learning algorithms
 - Bayes Optimal Classifier (BOC)
 - Stochastic Bayesian learning: Markov chain Monte Carlo (MCMC)
 - Additional insight into Occam's Razor (MDL)
Probabilistic Concepts versus Probabilistic Learning

- Two Distinct Notions: Probabilistic Concepts, Probabilistic Learning
- Probabilistic Concepts
 - Learned concept is a function, $c: X \rightarrow [0, 1]$
 - $c(x)$, the target value, denotes the probability that the label 1 (i.e., True) is assigned to x
 - Previous learning theory is applicable (with some extensions)
- Probabilistic (i.e., Bayesian) Learning
 - Use of a probabilistic criterion in selecting a hypothesis h
 - e.g., “most likely” h given observed data D: MAP hypothesis
 - e.g., h for which D is “most likely”: max likelihood (ML) hypothesis
 - May or may not be stochastic (i.e., search process might still be deterministic)
 - NB: h can be deterministic (e.g., a Boolean function) or probabilistic

Probability: Basic Definitions and Axioms

- Sample Space (Ω): Range of a Random Variable X
- Probability Measure $Pr(*)$
 - Ω denotes a range of “events”; $X: \Omega$
 - Probability Pr, or P, is a measure over
 - In a general sense, $Pr(X = x \in \Omega)$ is a measure of belief in $X = x$
 - $P(X = x) = 0$ or $P(X = x) = 1$: plain (aka categorical) beliefs (can’t be revised)
 - All other beliefs are subject to revision
- Kolmogorov Axioms
 - 1. $\forall x \in \Omega: 0 \leq P(X = x) \leq 1$
 - 2. $P(\Omega) = \sum_{x \in \Omega} P(X = x) = 1$
 - 3. $\forall X_1, X_2, \ldots \Rightarrow i = j \Rightarrow X_i \cap X_j = \emptyset$.
 - $P\left(\bigcup_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} P(X_i)$
- Joint Probability: $P(X_1 \cap X_2)$ = Probability of the Joint Event $X_1 \cap X_2$
- Independence: $P(X_1 \cap X_2) = P(X_1) \cdot P(X_2)$
Bayes’s Theorem

• Theorem

\[
P(h | D) = \frac{P(D | h) P(h)}{P(D)}
\]

– Prior Probability of Hypothesis \(h \)
– Measures initial beliefs (BK) before any information is obtained (hence prior)

• \(P(D) \) = Prior Probability of Training Data \(D \)
– Measures probability of obtaining sample \(D \) (i.e., expresses \(D \))

• \(P(h | D) \) = Probability of \(h \) Given \(D \)
– \| denotes conditioning - hence \(P(h | D) \) is a conditional (aka posterior) probability

• \(P(D | h) \) = Probability of \(D \) Given \(h \)
– Measures probability of observing \(D \) given that \(h \) is correct (“generative” model)

• \(P(h \land D) \) = Joint Probability of \(h \) and \(D \)
– Measures probability of observing \(D \) and of \(h \) being correct

Choosing Hypotheses

• Bayes’s Theorem

\[
P(h | D) = \frac{P(D | h) P(h)}{P(D)}
\]

• MAP Hypothesis
– Generally want most probable hypothesis given the training data
– Define: \(\arg \max_{x \in \Omega} f(x) \) = the value of \(x \) in the sample space \(\Omega \) with the highest \(f(x) \)
– Maximum a posteriori hypothesis, \(h_{MAP} \)

\[
h_{MAP} = \arg \max_{h} P(h | D)
\]

• ML Hypothesis
– Assume that \(p(h_i) = p(h_j) \) for all pairs \(i, j \) (uniform priors, i.e., \(P_h \sim \text{Uniform} \))
– Can further simplify and choose the maximum likelihood hypothesis, \(h_{ML} \)

\[
h_{ML} = \arg \max_{h_i} P(D | h_i)
\]
Bayes’s Theorem: Query Answering (QA)

- **Answering User Queries**
 - Suppose we want to perform intelligent inferences over a database DB
 - Scenario 1: DB contains records (instances), some “labeled” with answers
 - Scenario 2: DB contains probabilities (annotations) over propositions
 - QA: an application of probabilistic inference

- **QA Using Prior and Conditional Probabilities: Example**
 - Query: *Does patient have cancer or not?*
 - Suppose: patient takes a lab test and result comes back positive
 - Correct + result in only 98% of the cases in which disease is actually present
 - Correct - result in only 97% of the cases in which disease is not present
 - Only 0.008 of the entire population has this cancer
 - $\alpha = P(\text{false negative for } H_0 = \text{Cancer}) = 0.02$ (NB: for 1-point sample)
 - $\beta = P(\text{false positive for } H_0 = \text{Cancer}) = 0.03$ (NB: for 1-point sample)
 - $P(+ | H_0) = 0.008$, $P(+) | H_A = 0.0298 \Rightarrow h_{MAP} = H_A = \neg\text{Cancer}$

Basic Formulas for Probabilities

- **Product Rule** (Alternative Statement of Bayes’s Theorem)
 $$P(A | B) = \frac{P(A \land B)}{P(B)}$$
 - Proof: requires axiomatic set theory, as does Bayes’s Theorem

- **Sum Rule**
 $$P(A \lor B) = P(A) + P(B) - P(A \land B)$$
 - Sketch of proof (immediate from axiomatic set theory)
 - Draw a Venn diagram of two sets denoting events A and B
 - Let $A \lor B$ denote the event corresponding to $A \lor B$...

- **Theorem of Total Probability**
 - Suppose events A_1, A_2, \ldots, A_n are mutually exclusive and exhaustive
 - Mutually exclusive: $i \neq j \Rightarrow A_i \land A_j = \emptyset$
 - Exhaustive: $\sum_{i=1}^{n} P(A_i) = 1$
 - Then
 $$P(B) = \sum_{i} P(B | A_i) P(A_i)$$
 - Proof: follows from product rule and 3rd Kolmogorov axiom
MAP and ML Hypotheses: A Pattern Recognition Framework

- Pattern Recognition Framework
 - Automated speech recognition (ASR), automated image recognition
 - Diagnosis

- Forward Problem: One Step in ML Estimation
 - Given: model \(h \), observations (data) \(D \)
 - Estimate: \(P(D \mid h) \), the "probability that the model generated the data"

- Backward Problem: Pattern Recognition / Prediction Step
 - Given: model \(h \), observations \(D \)
 - Maximize: \(P(h(X) = x \mid h, D) \) for a new \(X \) (i.e., find best \(x \))

- Forward-Backward (Learning) Problem
 - Given: model space \(H \), data \(D \)
 - Find: \(h \in H \) such that \(P(h \mid D) \) is maximized (i.e., MAP hypothesis)

- More Info
 - Emphasis on a particular \(H \) (the space of hidden Markov models)

Bayesian Learning Example: Unbiased Coin [1]

- Coin Flip
 - Sample space: \(\Omega = \{\text{Head}, \text{Tail}\} \)
 - Scenario: given coin is either fair or has a 60% bias in favor of Head
 - \(h_1 \) = fair coin: \(P(\text{Head}) = 0.5 \)
 - \(h_2 \) = 60% bias towards Head: \(P(\text{Head}) = 0.6 \)
 - Objective: to decide between default (null) and alternative hypotheses

- A Priori (aka Prior) Distribution on \(H \)
 - \(P(h_1) = 0.75, P(h_2) = 0.25 \)
 - Reflects learning agent’s prior beliefs regarding \(H \)
 - Learning is revision of agent’s beliefs

- Collection of Evidence
 - First piece of evidence: \(d \) = a single coin toss, comes up Head
 - Q: What does the agent believe now?
 - A: Compute \(P(d) = P(d \mid h_1) P(h_1) + P(d \mid h_2) P(h_2) \)
Bayesian Learning Example: Unbiased Coin [2]

- Bayesian Inference: Compute $P(d) = P(d | h_1) P(h_1) + P(d | h_2) P(h_2)$
 - $P(\text{Head}) = 0.5 \cdot 0.75 + 0.6 \cdot 0.25 = 0.375 + 0.15 = 0.525$
 - This is the probability of the observation $d = \text{Head}$

- Bayesian Learning
 - Now apply Bayes’s Theorem
 - $P(h_1 | d) = P(d | h_1) P(h_1) / P(d) = 0.375 / 0.525 = 0.714$
 - $P(h_2 | d) = P(d | h_2) P(h_2) / P(d) = 0.15 / 0.525 = 0.286$
 - Belief has been revised downwards for h_1, upwards for h_2
 - The agent still thinks that the fair coin is the more likely hypothesis
 - Suppose we were to use the ML approach (i.e., assume equal priors)
 - Belief is revised upwards from 0.5 for h_1
 - Data then supports the bias coin better

- More Evidence: Sequence D of 100 coins with 70 heads and 30 tails
 - $P(D) = (0.5)^{70} \cdot (0.5)^{30} \cdot 0.75 + (0.6)^{70} \cdot (0.4)^{30} \cdot 0.25$
 - Now $P(h_1 | d) << P(h_2 | d)$

Brute Force MAP Hypothesis Learner

- Intuitive Idea: Produce Most Likely h Given Observed D
- Algorithm Find-MAP-Hypothesis (D)
 - 1. FOR each hypothesis $h \in H$
 - Calculate the conditional (i.e., posterior) probability:
 $P(h | D) = \frac{P(D | h) P(h)}{P(D)}$
 - 2. RETURN the hypothesis h_{MAP} with the highest conditional probability
 $h_{\text{MAP}} = \arg \max_{h \in H} P(h | D)$
Relation to Concept Learning

• Usual Concept Learning Task
 – Instance space X
 – Hypothesis space H
 – Training examples D

• Consider Find-S Algorithm
 – Given: D
 – Return: most specific h in the version space $VS_{H,D}$

• MAP and Concept Learning
 – Bayes’s Rule: Application of Bayes’s Theorem
 – What would Bayes’s Rule produce as the MAP hypothesis?

• Does Find-S Output A MAP Hypothesis?

Bayesian Concept Learning and Version Spaces

• Assumptions
 – Fixed set of instances $\langle x_1, x_2, ..., x_m \rangle$
 – Let D denote the set of classifications: $D = \langle c(x_1), c(x_2), ..., c(x_m) \rangle$

• Choose $P(D \mid h)$
 – $P(D \mid h) = 1$ if h consistent with D (i.e., $\forall x_i, h(x_i) = c(x_i)$)
 – $P(D \mid h) = 0$ otherwise

• Choose $P(h) \sim$ Uniform
 – Uniform distribution: $P(h) = \frac{1}{|H|}$
 – Uniform priors correspond to “no background knowledge” about h
 – Recall: maximum entropy

• MAP Hypothesis
 \[P(h \mid D) = \begin{cases}
 \frac{1}{|VS_{H,D}|} & \text{if } h \text{ is consistent with } D \\
 0 & \text{otherwise}
 \end{cases} \]
Evolution of Posterior Probabilities

- **Start with Uniform Priors**
 - Equal probabilities assigned to each hypothesis
 - Maximum uncertainty (entropy), minimum prior information

- **Evidential Inference**
 - Introduce data (evidence) D_1: belief revision occurs
 - Learning agent revises conditional probability of inconsistent hypotheses to 0
 - Posterior probabilities for remaining $h \in \mathcal{V}_{H,D}$ revised upward
 - Add more data (evidence) D_2: further belief revision

Characterizing Learning Algorithms by Equivalent MAP Learners

- **Inductive System**
 - Candidate Elimination Algorithm
 - Output hypotheses

- **Equivalent Bayesian Inference System**
 - Brute Force MAP Learner
 - Output hypotheses

Prior knowledge made explicit

CIS 732: Machine Learning and Pattern Recognition
Maximum Likelihood: Learning A Real-Valued Function [1]

- **Problem Definition**
 - Target function: any real-valued function f
 - Training examples $\langle x_i, y_i \rangle$ where y_i is noisy training value
 - $y_i = f(x_i) + e_i$
 - e_i is random variable (noise) i.i.d. \sim Normal $(0, \sigma)$; aka Gaussian noise
 - Objective: approximate f as closely as possible

- **Solution**
 - Maximum likelihood hypothesis h_{ML}
 - Minimizes sum of squared errors (SSE)
 \[
 h_{ML} = \arg \min_{h \in H} \sum_{i=1}^{n} (d_i - h(x_i))^2
 \]

Maximum Likelihood: Learning A Real-Valued Function [2]

- **Derivation of Least Squares Solution**
 - Assume noise is Gaussian (prior knowledge)
 - Max likelihood solution:
 \[
 h_{ML} = \arg \max_{h \in H} p(D \mid h) = \arg \max_{h \in H} \prod_{i=1}^{n} p(d_i \mid h)
 = \arg \max_{h \in H} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \left(\frac{d_i - h(x_i)}{\sigma}\right)^2}
 \]

- **Problem**: Computing Exponents, Comparing Reals - Expensive!
- **Solution**: Maximize Log Prob
 \[
 h_{ML} = \arg \max_{h \in H} \sum_{i=1}^{n} \ln \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) - \frac{1}{2} \left(\frac{d_i - h(x_i)}{\sigma} \right)^2
 \]
 \[
 = \arg \max_{h \in H} \sum_{i=1}^{n} \left[- \frac{1}{2} \left(\frac{d_i - h(x_i)}{\sigma} \right)^2 \right]
 = \arg \max_{h \in H} \sum_{i=1}^{n} \left(\frac{d_i - h(x_i)}{\sigma} \right)^2
 = \arg \min_{h \in H} \sum_{i=1}^{n} (d_i - h(x_i))^2
 \]
Learning to Predict Probabilities

• Application: Predicting Survival Probability from Patient Data

• Problem Definition
 – Given training examples $<x_i, d_i>$, where $d_i \in \{0, 1\}$
 – Want to train neural network to output a probability given x_i (not a 0 or 1)

• Maximum Likelihood Estimator (MLE)
 – In this case can show:
 $$ h_{\text{MLE}} = \arg \max_{h \in \mathcal{H}} \sum_{i=1}^{m} [d_i \ln h(x_i) + (1 - d_i) \ln (1 - h(x_i))] $$
 – Weight update rule for a sigmoid unit
 $$ \Delta w_{\text{start-layer,end-layer}} = w_{\text{start-layer,end-layer}} \cdot \Delta w $$

Most Probable Classification of New Instances

• MAP and MLE: Limitations
 – Problem so far: “find the most likely hypothesis given the data”
 – Sometimes we just want the best classification of a new instance x, given D

• A Solution Method
 – Find best (MAP) h, use it to classify
 – This may not be optimal, though!
 – Analogy
 • Estimating a distribution using the mode versus the integral
 • One finds the maximum, the other the area

• Refined Objective
 – Want to determine the most probable classification
 – Need to combine the prediction of all hypotheses
 – Predictions must be weighted by their conditional probabilities
 – Result: Bayes Optimal Classifier (next time...)
Terminology

• Introduction to Bayesian Learning
 – Probability foundations
 • Definitions: subjectivist, frequentist, logicist
 • (3) Kolmogorov axioms
• Bayes's Theorem
 – Prior probability of an event
 – Joint probability of an event
 – Conditional (posterior) probability of an event
• Maximum A Posteriori (MAP) and Maximum Likelihood (ML) Hypotheses
 – MAP hypothesis: highest conditional probability given observations (data)
 – ML: highest likelihood of generating the observed data
 – ML estimation (MLE): estimating parameters to find ML hypothesis
• Bayesian Inference: Computing Conditional Probabilities (CPs) in A Model
• Bayesian Learning: Searching Model (Hypothesis) Space using CPs

Summary Points

• Introduction to Bayesian Learning
 – Framework: using probabilistic criteria to search \(H \)
 – Probability foundations
 • Definitions: subjectivist, objectivist; Bayesian, frequentist, logicist
 • Kolmogorov axioms
• Bayes’s Theorem
 – Definition of conditional (posterior) probability
 – Product rule
• Maximum A Posteriori (MAP) and Maximum Likelihood (ML) Hypotheses
 – Bayes’s Rule and MAP
 – Uniform priors: allow use of MLE to generate MAP hypotheses
 – Relation to version spaces, candidate elimination
• Next Week: 6.6-6.10, Mitchell; Chapter 14-15, Russell and Norvig; Roth
 – More Bayesian learning: MDL, BOC, Gibbs, Simple (Naïve) Bayes
 – Learning over text