Lecture 07 of 42

Decision Trees, Occam’s Razor, and Overfitting

Wednesday, 31 January 2007

William H. Hsu
Department of Computing and Information Sciences, KSU
http://www.cis.ksu.edu/~bhsu

Readings:
Chapter 3.6-3.8, Mitchell

Lecture Outline

• Read Sections 3.6-3.8, Mitchell
• Occam’s Razor and Decision Trees
 - Preference biases versus language biases
 - Two issues regarding Occam algorithms
 • Is Occam’s Razor well defined?
 • Why prefer smaller trees?
• Overfitting (aka Overtraining)
 - Problem: fitting training data too closely
 • Small-sample statistics
 • General definition of overfitting
 - Overfitting prevention, avoidance, and recovery techniques
 • Prevention: attribute subset selection
 • Avoidance: cross-validation
 • Detection and recovery: post-pruning
• Other Ways to Make Decision Tree Induction More Robust
Decision Tree Learning: Top-Down Induction (ID3)

- Algorithm Build-DT (Examples, Attributes)

 IF all examples have the same label THEN RETURN (leaf node with label)
 ELSE
 IF set of attributes is empty THEN RETURN (leaf with majority label)
 ELSE
 Choose best attribute A as root
 FOR each value v of A
 Create a branch out of the root for the condition A = v
 IF \{x ∈ Examples: x.A = v\} = Ø THEN RETURN (leaf with majority label)
 ELSE Build-DT ((x ∈ Examples: x.A = v), Attributes ~ (A))

 But Which Attribute Is Best?

Broadening the Applicability of Decision Trees

- Assumptions in Previous Algorithm
 - Discrete output
 - Real-valued outputs are possible
 - Regression trees [Breiman et al., 1984]
 - Discrete input
 - Quantization methods
 - Inequalities at nodes instead of equality tests (see rectangle example)

- Scaling Up
 - Critical in knowledge discovery and database mining (KDD) from very large databases (VLDB)
 - Good news: efficient algorithms exist for processing many examples
 - Bad news: much harder when there are too many attributes

- Other Desired Tolerances
 - Noisy data (classification noise ≡ incorrect labels; attribute noise ≡ inaccurate or imprecise data)
 - Missing attribute values
Choosing the “Best” Root Attribute

• Objective
 – Construct a decision tree that is as small as possible (Occam’s Razor)
 – Subject to: consistency with labels on training data

• Obstacles
 – Finding the minimal consistent hypothesis (i.e., decision tree) is NP-hard (D’oh!)
 – Recursive algorithm (Build-DT)
 • A greedy heuristic search for a simple tree
 • Cannot guarantee optimality (D’oh!)

• Main Decision: Next Attribute to Condition On
 – Want: attributes that split examples into sets that are relatively pure in one label
 – Result: closer to a leaf node
 – Most popular heuristic
 • Developed by J. R. Quinlan
 • Based on information gain
 • Used in ID3 algorithm

A Measure of Uncertainty

– The Quantity
 • Purity: how close a set of instances is to having just one label
 • Impurity (disorder): how close it is to total uncertainty over labels

– The Measure: Entropy
 • Directly proportional to impurity, uncertainty, irregularity, surprise
 • Inversely proportional to purity, certainty, regularity, redundancy

Example

– For simplicity, assume \(H = \{0, 1\} \), distributed according to \(Pr(y) \)
 • Can have (more than 2) discrete class labels
 • Continuous random variables: differential entropy

– Optimal purity for \(y \): either
 • \(Pr(y = 0) = 1, Pr(y = 1) = 0 \)
 • \(Pr(y = 1) = 1, Pr(y = 0) = 0 \)

– What is the least pure probability distribution?
 • \(Pr(y = 0) = 0.5, Pr(y = 1) = 0.5 \)
 • Corresponds to maximum impurity/uncertainty/irregularity/surprise
 • Property of entropy: concave function (“concave downward”)
Entropy: Information Theoretic Definition

- **Components**
 - D: a set of examples $\{<x_1, c(x_1)>, <x_2, c(x_2)>, \ldots, <x_m, c(x_m)>\}$
 - $p_+ = Pr(c(x) = +), p_- = Pr(c(x) = -)$

- **Definition**
 - H is defined over a probability density function p
 - D contains examples whose frequency of + and - labels indicates p_+ and p_- for the observed data
 - The entropy of D relative to c is:
 $$H(D) = -p_+ \log_b (p_+) - p_- \log_b (p_-)$$

- **What Units is H Measured In?**
 - Depends on the base b of the log (bits for $b = 2$, nats for $b = e$, etc.)
 - A single bit is required to encode each example in the worst case ($p_+ = 0.5$)
 - If there is less uncertainty (e.g., $p_+ = 0.8$), we can use less than 1 bit each

Information Gain: Information Theoretic Definition

- **Partitioning on Attribute Values**
 - Recall: a partition of D is a collection of disjoint subsets whose union is D
 - Goal: measure the uncertainty removed by splitting on the value of attribute A

- **Definition**
 - The information gain of D relative to attribute A is the expected reduction in entropy due to splitting ("sorting") on A:
 $$\text{Gain}(D, A) = -H(D) - \sum_{v\in\text{values}(A)} \frac{|D_v|}{|D|} H(D_v)$$

 - Idea: partition on A; scale entropy to the size of each subset D_v

- **Which Attribute Is Best?**
 - A_1
 - True: $[29+, 35-]$
 - False: $[8+, 30-]$
 - A_2
 - True: $[18+, 33-]$
 - False: $[11+, 2-]$

KSU
An Illustrative Example

- Training Examples for Concept PlayTennis

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Light</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Light</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>

- ID3 = Build-DT using Gain(*)
- How Will ID3 Construct A Decision Tree?

Constructing A Decision Tree for PlayTennis using ID3 [1]

- Selecting The Root Attribute

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Light</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Light</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>

- Prior (unconditioned) distribution: 9+, 5-
 - $H(D) = -(9/14) \log_2 (9/14) - (5/14) \log_2 (5/14) = 0.94$ bits
 - $H(D, Humidity = High) = -(3/7) \log_2 (3/7) - (4/7) \log_2 (4/7) = 0.985$ bits
 - $H(D, Humidity = Normal) = -(6/7) \log_2 (6/7) - (1/7) \log_2 (1/7) = 0.592$ bits
 - $Gain(D, Humidity) = 0.94 - (7/14) \times 0.985 - (7/14) \times 0.592 = 0.151$ bits
 - Similarly, $Gain(D, Wind) = 0.94 - (8/14) \times 0.811 - (6/14) \times 1.0 = 0.048$ bits

$$Gain(D,A) = -H(D) - \sum_{v \in \text{values}(A)} \left(\frac{P_v}{P} \right) H(D_v)$$
Constructing A Decision Tree for PlayTennis using ID3 [2]

- Selecting The Root Attribute
 - \(\text{Gain}(D, \text{Humidity}) = 0.151 \) bits
 - \(\text{Gain}(D, \text{Wind}) = 0.048 \) bits
 - \(\text{Gain}(D, \text{Temperature}) = 0.029 \) bits
 - \(\text{Gain}(D, \text{Outlook}) = 0.246 \) bits

- Selecting The Next Attribute (Root of Subtree)
 - Continue until every example is included in path or purity = 100%
 - What does purity = 100% mean?
 - Can \(\text{Gain}(D, A) < 0 \)?

Constructing A Decision Tree for PlayTennis using ID3 [3]

- Selecting The Next Attribute (Root of Subtree)
 - Convention: \(\lg (0/a) = 0 \)
 - \(\text{Gain}(D_{\text{Sunny}}, \text{Humidity}) = 0.97 - (3/5) \times 0 - (2/5) \times 0 = 0.97 \) bits
 - \(\text{Gain}(D_{\text{Sunny}}, \text{Wind}) = 0.97 - (2/5) \times 1 - (3/5) \times 0.92 = 0.02 \) bits
 - \(\text{Gain}(D_{\text{Sunny}}, \text{Temperature}) = 0.57 \) bits

- Top-Down Induction
 - For discrete-valued attributes, terminates in \(O(n) \) splits
 - Makes at most one pass through data set at each level (why?)
Constructing A Decision Tree for PlayTennis using ID3 [4]

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Light</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>

Outlook?
1,2,3,4,5,6,7,8,9,10,11,12,13,14
[9+,5-]
Sunny
Overcast
Rain

Humidity?
High
Normal
1,2,8,9,11
[2+,3-]
3,7,12,13
[4+,0-]
Strong
Light

Wind?
Yes
No
4,5,6,10,14
[3+,2-]

1,2,3,4,5,6,7,8,9,10,11,12,13,14
[9+,5-]

Hypothesis Space Search by ID3

- **Search Problem**
 - Conduct a search of the space of decision trees, which can represent all possible discrete functions
 - Pros: expressiveness; flexibility
 - Cons: computational complexity; large, incomprehensible trees (next time)
 - Objective: to find the best decision tree (minimal consistent tree)
 - Obstacle: finding this tree is \(\text{NP} \)-hard
 - Tradeoff
 - Use heuristic (figure of merit that guides search)
 - Use greedy algorithm
 - Aka hill-climbing (gradient “descent”) without backtracking

- **Statistical Learning**
 - Decisions based on statistical descriptors \(p_+, p_- \) for subsamples \(D_v \)
 - In ID3, all data used
 - Robust to noisy data
Inductive Bias in ID3

- Heuristic : Search :: Inductive Bias : Inductive Generalization
 - \(H \) is the power set of instances in \(X \)
 - \(\Rightarrow \) Unbiased? Not really…
 - Preference for short trees (termination condition)
 - Preference for trees with high information gain attributes near the root
 - \(\text{Gain}(\cdot) \): a heuristic function that captures the inductive bias of ID3
 - Bias in ID3
 - Preference for some hypotheses is encoded in heuristic function
 - Compare: a restriction of hypothesis space \(H \) (previous discussion of propositional normal forms: \(k\)-CNF, etc.)

- Preference for Shortest Tree
 - Prefer shortest tree that fits the data
 - An Occam’s Razor bias: shortest hypothesis that explains the observations

MLC++:
A Machine Learning Library

- \textit{MLC++}
 - An object-oriented machine learning library
 - Contains a suite of inductive learning algorithms (including \textit{ID3})
 - Supports incorporation, reuse of other DT algorithms (\textit{C4.5}, etc.)
 - Automation of statistical evaluation, cross-validation

- Wrappers
 - Optimization loops that iterate over inductive learning functions (\textit{inducers})
 - Used for performance tuning (finding subset of \textit{relevant} attributes, etc.)

- Combiners
 - Optimization loops that iterate over or interleave inductive learning functions
 - Used for performance tuning (finding subset of \textit{relevant} attributes, etc.)
 - Examples: bagging, boosting (later in this course) of \textit{ID3}, \textit{C4.5}

- Graphical Display of Structures
 - Visualization of DTs (AT&T \textit{dotty}, SGI \textit{MineSet TreeViz})
 - General logic diagrams (projection visualization)
Occam’s Razor and Decision Trees: A Preference Bias

- Preference Biases versus Language Biases
 - Preference bias
 - Captured (“encoded”) in learning algorithm
 - Compare: search heuristic
 - Language bias
 - Captured (“encoded”) in knowledge (hypothesis) representation
 - Compare: restriction of search space
 - aka restriction bias

- Occam’s Razor: Argument in Favor
 - Fewer short hypotheses than long hypotheses
 - e.g., half as many bit strings of length \(n\) as of length \(n + 1\), \(n \geq 0\)
 - Short hypothesis that fits data less likely to be coincidence
 - Long hypothesis (e.g., tree with 200 nodes, \(|D| = 100\)) could be coincidence
 - Resulting justification / tradeoff
 - All other things being equal, complex models tend not to generalize as well
 - Assume more model flexibility (specificity) won’t be needed later

Occam’s Razor and Decision Trees: Two Issues

- Occam’s Razor: Arguments Opposed
 - \(size(h)\) based on \(H\) - circular definition?
 - Objections to the preference bias: “fewer” not a justification

- Is Occam’s Razor Well Defined?
 - Internal knowledge representation (KR) defines which \(h\) are “short” - arbitrary?
 - e.g., single “(Sunny ∧ Normal-Humidity) ∨ Overcast ∨ (Rain ∧ Light-Wind)” test
 - Answer: \(L\) fixed; imagine that biases tend to evolve quickly, algorithms slowly

- Why Short Hypotheses Rather Than Any Other Small \(H\)?
 - There are many ways to define small sets of hypotheses
 - For any size limit expressed by preference bias, some specification \(S\) restricts \(size(h)\) to that limit (i.e., “accept trees that meet criterion \(S\)”)
 - e.g., trees with a prime number of nodes that use attributes starting with “Z”
 - Why small trees and not trees that (for example) test \(A_1, A_1, \ldots, A_{11}\) in order?
 - What’s so special about small \(H\) based on \(size(h)\)?
 - Answer: stay tuned, more on this in Chapter 6, Mitchell
Overfitting in Decision Trees: An Example

- **Recall: Induced Tree**

 ![Boolean Decision Tree for Concept PlayTennis](image)

 - **Noisy Training Example**
 - Example 15: `<Sunny, Hot, Normal, Strong, ->`
 - Example is noisy because the correct label is +
 - Previously constructed tree misclassifies it
 - How shall the DT be revised (incremental learning)?
 - New hypothesis $h' = T'$ is expected to perform worse than $h = T$

- **Overfitting in Inductive Learning**

 - **Definition**
 - Hypothesis h overfits training data set D if \exists an alternative hypothesis h' such that $\text{error}_D(h) < \text{error}_D(h')$ but $\text{error}_{\text{test}}(h) > \text{error}_{\text{test}}(h')$
 - Causes: sample too small (decisions based on too little data); noise; coincidence

 - **How Can We Combat Overfitting?**
 - Analogy with computer virus infection, process deadlock
 - **Prevention**
 - Addressing the problem “before it happens”
 - Select attributes that are relevant (i.e., will be useful in the model)
 - **Avoidance**
 - Sidestepping the problem just when it is about to happen
 - Holding out a test set, stopping when h starts to do worse on it
 - **Detection and Recovery**
 - Letting the problem happen, detecting when it does, recovering afterward
 - Build model, remove (prune) elements that contribute to overfitting
How Can We Combat Overfitting?

- **Prevention** (more on this later)
 - Select attributes that are relevant (i.e., will be useful in the DT)
 - Predictive measure of relevance: attribute filter or subset selection wrapper

- **Avoidance**
 - Holding out a validation set, stopping when \(h \equiv T \) starts to do worse on it

How to Select “Best” Model (Tree)

- Measure performance over training data and separate validation set
- **Minimum Description Length (MDL):**
 - minimize \(\text{size}(h \equiv T) + \text{size}(\text{misclassifications}(h \equiv T)) \)

Today: Two Basic Approaches

- **Pre-pruning** (avoidance): stop growing tree at some point during construction when it is determined that there is not enough data to make reliable choices
- **Post-pruning** (recovery): grow the full tree and then remove nodes that seem not to have sufficient evidence

Methods for Evaluating Subtrees to Prune

- **Cross-validation:** reserve hold-out set to evaluate utility of \(T \) (more in Chapter 4)
- Statistical testing: test whether observed regularity can be dismissed as likely to have occurred by chance (more in Chapter 5)
- **Minimum Description Length (MDL):**
 - Additional complexity of hypothesis \(T \) greater than that of remembering exceptions?
 - Tradeoff: coding model versus coding residual error
Reduced-Error Pruning

• Post-Pruning, Cross-Validation Approach
• Split Data into Training and Validation Sets
• Function Prune(T, node)
 – Remove the subtree rooted at node
 – Make node a leaf (with majority label of associated examples)
• Algorithm Reduced-Error-Pruning (D)
 – Partition D into D_{train} (training / “growing”), D_{validation} (validation / “pruning”)
 – Build complete tree T using ID3 on D_{train}
 – UNTIL accuracy on D_{validation} decreases DO
 FOR each non-leaf node candidate in T
 Temp[candidate] ← Prune (T, candidate)
 Accuracy[candidate] ← Test (Temp[candidate], D_{validation})
 T ← T’ ∈ Temp with best value of Accuracy (best increase; greedy)
 – RETURN (pruned) T

Effect of Reduced-Error Pruning

• Reduction of Test Error by Reduced-Error Pruning
 – Test error reduction achieved by pruning nodes
 – NB: here, D_{validation} is different from both D_{train} and D_{test}
• Pros and Cons
 – Pro: Produces smallest version of most accurate T’ (subtree of T)
 – Con: Uses less data to construct T
 • Can afford to hold out D_{validation}?
 • If not (data is too limited), may make error worse (insufficient D_{train})
Rule Post-Pruning

- **Frequently Used Method**
 - Popular anti-overfitting method; perhaps most popular pruning method
 - Variant used in C4.5, an outgrowth of ID3

- **Algorithm Rule-Post-Pruning (D)**
 - Infer T from D (using ID3) - grow until D is fit as well as possible (allow overfitting)
 - Convert T into equivalent set of rules (one for each root-to-leaf path)
 - Prune (generalize) each rule independently by deleting any preconditions whose deletion improves its estimated accuracy
 - Sort the pruned rules
 - Sort by their estimated accuracy
 - Apply them in sequence on D_{test}

Converting a Decision Tree into Rules

- **Rule Syntax**
 - LHS: precondition (conjunctive formula over attribute equality tests)
 - RHS: class label

```
Outlook?
   Sunny Overcast Rain
humidity?
      High Normal
          Yes No Strong Light
    Wind?
        Yes No
```

- **Example**
 - IF (Outlook = Sunny) \land (Humidity = High) THEN PlayTennis = No
 - IF (Outlook = Sunny) \land (Humidity = Normal) THEN PlayTennis = Yes
 - ...

Boolean Decision Tree for Concept PlayTennis
Continuous Valued Attributes

- Two Methods for Handling Continuous Attributes
 - Discretization (e.g., histogramming)
 - Break real-valued attributes into ranges in advance
 - e.g., \{high = Temp > 35º C, med = 10º C < Temp ≤ 35º C, low = Temp ≤ 10º C\}
 - Using thresholds for splitting nodes
 - e.g., \(A ≤ a \) produces subsets \(A ≤ a \) and \(A > a \)
 - Information gain is calculated the same way as for discrete splits

- How to Find the Split with Highest Gain?
 - FOR each continuous attribute \(A \)
 - Divide examples \(\{x \in D\} \) according to \(x.A \)
 - FOR each ordered pair of values \((l, u)\) of \(A \) with different labels
 - Evaluate gain of mid-point as a possible threshold, i.e., \(D_A ≤ (l+u)/2 \), \(D_A > (l+u)/2 \)
 - Example
 - \(A \equiv \text{Length}: 10 \ 15 \ 21 \ 28 \ 32 \ 40 \ 50 \)
 - Class: \(+\ +\ +\ -\ +\ -\ -\)
 - Check thresholds: \(\text{Length} ≤ 12.5? \ 24.5? \ 30? \ 45? \)

Attributes with Many Values

- Problem
 - If attribute has many values, \(\text{Gain}(\cdot) \) will select it (why?)
 - Imagine using \(\text{Date} = 06/03/1996 \) as an attribute!
- One Approach: Use \(\text{GainRatio} \) instead of \(\text{Gain} \)
 \[
 \text{Gain}(D, A) = -H(D) - \sum_{v \in \text{values}(A)} \left[\frac{P_v}{|P|} \cdot H(D_v) \right]
 \]
 \[
 \text{GainRatio}(D, A) = \frac{\text{Gain}(D, A)}{\text{SplitInformation}(D, A)}
 \]
 \[
 \text{SplitInformation}(D, A) = -\sum_{v \in \text{values}(A)} \left[\frac{P_v}{|P|} \cdot \frac{P_v}{|P|} \log \left(\frac{|P_v|}{|P|} \right) \right]
 \]
- \(\text{SplitInformation} \): directly proportional to \(c = |\text{values}(A)| \)
- i.e., penalizes attributes with more values
 - e.g., suppose \(c_1 = c_{\text{date}} = n \) and \(c_2 = 2 \)
 - \(\text{SplitInformation} (A_1) = \log(n), \text{SplitInformation} (A_2) = 1 \)
 - If \(\text{Gain}(D, A_1) = \text{Gain}(D, A_2), \text{GainRatio} (D, A_1) \ll \text{GainRatio} (D, A_2) \)
 - Thus, preference bias (for lower branch factor) expressed via \(\text{GainRatio}(\cdot) \)
Attributes with Costs

- **Application Domains**
 - **Medical:** *Temperature* has cost $10; *BloodTestResult*, $150; *Biopsy*, $300
 - Also need to take into account *invasiveness* of the procedure (patient utility)
 - Risk to patient (e.g., amniocentesis)
 - Other units of cost
 - *Sampling time:* e.g., robot sonar (range finding, etc.)
 - Risk to artifacts, organisms (about which information is being gathered)
 - Related domains (e.g., tomography): *nondestructive evaluation*

- **How to Learn A Consistent Tree with Low Expected Cost?**
 - One approach: replace gain by *Cost-Normalized-Gain*
 - Examples of normalization functions
 - [Nunez, 1988]:
 \[\text{Cost-Normalized-Gain}(D,A) = \frac{\text{Gain}(D,A)}{\text{Cost}(D,A)} \]
 - [Tan and Schlimmer, 1990]:
 \[\text{Cost-Normalized-Gain}(D,A) = \frac{\text{Gain}(D,A)}{\text{Cost}(D,A)} - 1 \]
 where \(w \) determines importance of cost

Missing Data: Unknown Attribute Values

- **Problem:** What If Some Examples Missing Values of *A*?
 - Often, values not available for all attributes during training or testing
 - Example: medical diagnosis
 - *<Fever = true, Blood-Pressure = normal, ..., Blood-Test = ?, ...>*
 - Sometimes values truly unknown, sometimes low priority (or cost too high)
 - Missing values in learning versus classification
 - **Training:** evaluate \(\text{Gain}(D, A) \) where for some \(x \in D \), a value for *A* is not given
 - **Testing:** classify a new example \(x \) without knowing the value of *A*

- **Solutions:** Incorporating a *Guess* into Calculation of \(\text{Gain}(D, A) \)

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>Play/Tennis?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Light</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Rain</td>
<td>Cold</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Rain</td>
<td>Cold</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>Overcast</td>
<td>Cold</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Light</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Light</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>Sunny</td>
<td>Warm</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>12</td>
<td>Overcast</td>
<td>Warm</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>Overcast</td>
<td>Warm</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>

KSU

CIS 732: Machine Learning and Pattern Recognition
Terminology

- **Occam’s Razor and Decision Trees**
 - Preference biases: captured by hypothesis space search algorithm
 - Language biases: captured by hypothesis language (search space definition)

- **Overfitting**
 - Overfitting: \(h \) does better than \(h' \) on training data and worse on test data
 - Prevention, avoidance, and recovery techniques
 - Prevention: attribute subset selection
 - Avoidance: stopping (termination) criteria, cross-validation, pre-pruning
 - Detection and recovery: post-pruning (reduced-error, rule)

- **Other Ways to Make Decision Tree Induction More Robust**
 - Inequality DTs (decision surfaces): a way to deal with continuous attributes
 - Information gain ratio: a way to normalize against many-valued attributes
 - Cost-normalized gain: a way to account for attribute costs (utilities)
 - Missing data: unknown attribute values or values not yet collected
 - Feature construction: form of constructive induction; produces new attributes
 - Replication: repeated attributes in DTs

Summary Points

- **Occam’s Razor and Decision Trees**
 - Preference biases versus language biases
 - Two issues regarding Occam algorithms
 - Why prefer smaller trees? (less chance of “coincidence”)
 - Is Occam’s Razor well defined? (yes, under certain assumptions)
 - MDL principle and Occam’s Razor: more to come

- **Overfitting**
 - Problem: fitting training data too closely
 - General definition of overfitting
 - Why it happens
 - Overfitting prevention, avoidance, and recovery techniques

- **Other Ways to Make Decision Tree Induction More Robust**
 - Next Week: Perceptrons, Neural Nets (Multi-Layer Perceptrons), Winnow