Lecture 6 of 42

Perceptrons and Winnow

Monday, 11 February 2008

William H. Hsu
Department of Computing and Information Sciences, KSU
http://www.kddresearch.org/Courses/Spring-2008/CIS732/

Readings:
Section 6.6, Han & Kamber 2e

Lecture Outline

• Textbook Reading: Sections 4.1-4.4, Mitchell
• Read “The Perceptron”, F. Rosenblatt; “Learning”, M. Minsky and S. Papert
• Next Lecture: 4.5-4.9, Mitchell; “The MLP”, Bishop; Chapter 8, RHW
• This Week’s Paper Review: “Learning by Experimentation”, Mitchell et al
• This Month: Numerical Learning Models (e.g., Neural/Bayesian Networks)
• The Perceptron
 – Today: as a linear threshold gate/unit (LTG/LTU)
 • Expressive power and limitations; ramifications
 • Convergence theorem
 • Derivation of a gradient learning algorithm and training (Delta aka LMS) rule
 – Next lecture: as a neural network element (especially in multiple layers)
• The Winnow
 – Another linear threshold model
 – Learning algorithm and training rule
Connectionist (Neural Network) Models

- **Human Brains**
 - Neuron switching time: ~ 0.001 (10^{-3}) second
 - Number of neurons: ~10-100 billion (10^{10} – 10^{11})
 - Connections per neuron: ~10-100 thousand (10^{4} – 10^{5})
 - Scene recognition time: ~0.1 second
 - 100 inference steps doesn’t seem sufficient! → highly parallel computation

- **Definitions of Artificial Neural Networks (ANNs)**
 - “… a system composed of many simple processing elements operating in parallel whose function is determined by network structure, connection strengths, and the processing performed at computing elements or nodes.” - DARPA (1988)
 - NN FAQ List: http://www.ci.tuwien.ac.at/docs/services/nnfaq/FAQ.html

- **Properties of ANNs**
 - Many neuron-like threshold switching units
 - Many weighted interconnections among units
 - Highly parallel, distributed process
 - Emphasis on tuning weights automatically

When to Consider Neural Networks

- **Input**: High-Dimensional and Discrete or Real-Valued
 - e.g., raw sensor input
 - Conversion of symbolic data to quantitative (numerical) representations possible

- **Output**: Discrete or Real Vector-Valued
 - e.g., low-level control policy for a robot actuator
 - Similar qualitative/quantitative (symbolic/numerical) conversions may apply

- **Data**: Possibly Noisy

- **Target Function**: Unknown Form

- **Result**: Human Readability Less Important Than Performance
 - Performance measured purely in terms of accuracy and efficiency
 - Readability: ability to explain inferences made using model; similar criteria

- **Examples**
 - Speech phoneme recognition [Waibel, Lee]
 - Image classification [Kanade, Baluja, Rowley, Frey]
 - Financial prediction
Autonomous Learning Vehicle in a Neural Net (ALVINN)

- Pomerleau et al
 - Drives 70mph on highways

The Perceptron

- Perceptron: Single Neuron Model
 - *aka Linear Threshold Unit (LTU) or Linear Threshold Gate (LTG)*
 - Net input to unit: defined as linear combination
 \[
 net = \sum_{i=0}^{n} w_i x_i
 \]
 - Output of unit: threshold (activation) function on net input
 \[
 o(x) = sgn(x, w) = \begin{cases}
 1 & \text{if } w \cdot x > 0 \\
 -1 & \text{otherwise}
 \end{cases}
 \]

 Vector notation: \(o(x) = sgn(x, w) \)

- Perceptron Networks
 - Neuron is modeled using a unit connected by weighted links \(w_i \) to other units
 - Multi-Layer Perceptron (MLP): next lecture
Decision Surface of a Perceptron

- **Perceptron: Can Represent Some Useful Functions**
 - LTU emulation of logic gates (McCulloch and Pitts, 1943)
 - e.g., What weights represent \(g(x_1, x_2) = \text{AND}(x_1, x_2) \)? \(\text{OR}(x_1, x_2) \)? \(\text{NOT}(x) \)?

- **Some Functions Not Representable**
 - e.g., not linearly separable
 - Solution: use networks of perceptrons (LTUs)

Learning Rules for Perceptrons

- **Learning Rule = Training Rule**
 - Not specific to supervised learning
 - Context: updating a model

- **Hebbian Learning Rule (Hebb, 1949)**
 - Idea: if two units are both active (“firing”), weights between them should increase
 - \(w_{ij} = w_{ij} + r o_i o_j \) where \(r \) is a learning rate constant
 - Supported by neuropsychological evidence

- **Perceptron Learning Rule (Rosenblatt, 1959)**
 - Idea: when a target output value is provided for a single neuron with fixed input, it can incrementally update weights to learn to produce the output
 - Assume binary (boolean-valued) input/output units; single LTU
 - \(w_i \leftarrow w_i + \Delta w_i \)
 - \(\Delta w_i = r(t - o)x_i \)
 - where \(t = c(x) \) is target output value, \(o \) is perceptron output, \(r \) is small learning rate constant (e.g., 0.1)
 - Can prove convergence if \(D \) linearly separable and \(r \) small enough
Perceptron Learning Algorithm

- **Simple Gradient Descent Algorithm**
 - Applicable to concept learning, symbolic learning (with proper representation)

- **Algorithm Train-Perceptron** ($D = \{ <x, t(x) = c(x)> \}$)
 - Initialize all weights w_i to random values
 - WHILE not all examples correctly predicted DO
 FOR each training example $x \in D$
 Compute current output $o(x)$
 FOR $i = 1$ to n
 $w_i \leftarrow w_i + r(t-o)x_i$ // perceptron learning rule

- **Perceptron Learnability**
 - Recall: can only learn $h \in H$ - i.e., linearly separable (LS) functions
 - Minsky and Papert, 1969: demonstrated representational limitations
 - e.g., parity (n-attribute XOR: $x_1 \oplus x_2 \oplus ... \oplus x_n$)
 - e.g., symmetry, connectedness in visual pattern recognition
 - Influential book *Perceptrons* discouraged ANN research for ~10 years
 - NB: $64K$ question - “Can we transform learning problems into LS ones?”

Linear Separators

- **Functional Definition**
 - $f(x) = 1$ if $w_1x_1 + w_2x_2 + ... + w_nx_n \geq 0$, 0 otherwise
 - θ: threshold value

- **Linearly Separable Functions**
 - NB: D is LS does not necessarily imply $c(x) = f(x)$ is LS!
 - Disjunctions: $c(x) = x_1' \lor x_2' \lor ... \lor x_m'$
 - m of n: $c(x)$ is at least 3 of $(x_1', x_2', ..., x_m')$
 - Exclusive OR (XOR): $c(x) = x_1 \oplus x_2$
 - General DNF: $c(x) = T_1 \lor T_2 \lor ... \lor T_m; T_i = l_1 \land l_2 \land ... \land l_k$

- **Change of Representation Problem**
 - Can we transform non-LS problems into LS ones?
 - Is this meaningful? Practical?
 - Does it represent a significant fraction of real-world problems?
Perceptron Convergence

• Perceptron Convergence Theorem
 – **Claim:** If there exist a set of weights that are consistent with the data (i.e., the data is linearly separable), the perceptron learning algorithm will converge
 – **Proof:** well-founded ordering on search region (“wedge width” is strictly decreasing) - see Minsky and Papert, 11.2-11.3
 – Caveat 1: How long will this take?
 – Caveat 2: What happens if the data is *not* LS?

• Perceptron Cycling Theorem
 – **Claim:** If the training data is not LS the perceptron learning algorithm will eventually repeat the same set of weights and thereby enter an infinite loop
 – **Proof:** bound on number of weight changes until repetition; induction on *n*, the dimension of the training example vector - MP, 11.10

• How to Provide More Robustness, Expressivity?
 – Objective 1: develop algorithm that will find closest approximation (today)
 – Objective 2: develop architecture to overcome representational limitation (next lecture)

Gradient Descent: Principle

• Understanding Gradient Descent for Linear Units
 – Consider simpler, unthresholded linear unit:

 \[o(x) = \text{net}(x) = \sum_{i \in D} w_i x_i \]

 – **Objective:** find “best fit” to *D*

• Approximation Algorithm
 – Quantitative objective: minimize error over training data set *D*
 – Error function: sum squared error (SSE)

 \[E[w] = \text{error}_D[w] = \frac{1}{2} \sum_{x \in D} (t(x) - o(x))^2 \]

• How to Minimize?
 – Simple optimization
 – Move in direction of steepest gradient in weight-error space
 – Computed by finding tangent
 – I.e. partial derivatives (of *E*) with respect to weights (*w*)
Gradient Descent: Derivation of Delta/LMS (Widrow-Hoff) Rule

- Definition: Gradient
 \[\nabla E[w] = \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \ldots, \frac{\partial E}{\partial w_n} \right] \]

- Modified Gradient Descent Training Rule
 \[\Delta w = -r \nabla E[w] \]
 \[\Delta w_i = -r \frac{\partial E}{\partial w_i} \]
 \[\frac{\partial E}{\partial w_i} = - \left(t(x) - o(x) \right) x_i \]
 \[\Delta w_i = \sum_{x \in D} \left(t(x) - o(x) \right) x_i \]

Algorithm Gradient-Descent \((D, r)\)
- Each training example is a pair of the form \(<x, t(x)>\), where \(x\) is the vector of input values and \(t(x)\) is the output value. \(r\) is the learning rate (e.g., 0.05)
- Initialize all weights \(w_i\) to (small) random values
- UNTIL the termination condition is met, DO
 - Initialize each \(\Delta w_i\) to zero
 - FOR each \(<x, t(x)> \) in \(D\), DO
 - Input the instance \(x\) to the unit and compute the output \(o\)
 - FOR each linear unit weight \(w_i\), DO
 - \(\Delta w_i \leftarrow \Delta w_i + r (t - o) x_i\)
 - \(w_i \leftarrow w_i + \Delta w_i\)
 - RETURN final \(w\)

Mechanics of Delta Rule
- Gradient is based on a derivative
- Significance: later, will use nonlinear activation functions (aka transfer functions, squashing functions)
Gradient Descent: Perceptron Rule versus Delta/LMS Rule

- LS Concepts: Can Achieve Perfect Classification
 - Example A: perceptron training rule converges
- Non-LS Concepts: Can Only Approximate
 - Example B: not LS; delta rule converges, but can't do better than 3 correct
 - Example C: not LS; better results from delta rule
- Weight Vector \(w = \text{Sum of Misclassified} \ x \in D \)
 - Perceptron: minimize \(w \)
 - Delta Rule: minimize \(\text{error} = \text{distance from separator} \) (i.e., maximize \(\nabla E \))

Incremental (Stochastic) Gradient Descent

- Batch Mode Gradient Descent
 - UNTIL the termination condition is met, DO
 1. Compute the gradient \(\nabla E_D[w] \)
 2. \(w \leftarrow w - r \nabla E_D[w] \)
 - RETURN final \(w \)
- Incremental (Online) Mode Gradient Descent
 - UNTIL the termination condition is met, DO
 FOR each \(<x, t(x)> \) in \(D \), DO
 1. Compute the gradient \(\nabla E_x[w] \)
 2. \(w \leftarrow w - r \nabla E_x[w] \)
 RETURN final \(w \)
- Emulating Batch Mode
 - \(E_D[w] = \frac{1}{2} \sum_{x \in D} (t(x) - o(x))^2 \), \(E_x[w] = \frac{1}{2} (t(x) - o(x))^2 \)
 - Incremental gradient descent can approximate batch gradient descent arbitrarily closely if \(r \) made small enough
Learning Disjunctions

• Hidden Disjunction to Be Learned
 – \(c(x) = x_1' \lor x_2' \lor \ldots \lor x_m' \) (e.g., \(x_2 \lor x_4 \lor x_5 \ldots \lor x_{100} \))
 – Number of disjunctions: \(3^m \) (each \(x_i \) included, negation included, or excluded)
 – \textit{Change of representation}: can turn into a \textit{monotone disjunctive} formula?
 • How?
 • How many disjunctions then?
 – Recall from COLT: mistake bounds
 • \(\log(|C|) = \Theta(n) \)
 • Elimination algorithm makes \(O(n) \) mistakes

• Many Irrelevant Attributes
 – Suppose only \(k \ll n \) attributes occur in disjunction \(c \) - i.e., \(\log(|C|) = O(k \log n) \)
 – Example: learning natural language (e.g., learning over text)
 – Idea: use a Winnow - perceptron-type LTU model (Littlestone, 1988)
 • \textit{Strengthen} weights for false positives
 • \textit{Learn} from negative examples too: \textit{weaken} weights for false negatives

Winnow Algorithm

• Algorithm \textit{Train-Winnow} \((D)\)
 – Initialize: \(\theta = n \), \(w_i = 1 \)
 – UNTIL the termination condition is met, DO
 FOR each \(<x, t(x)> \) in \(D \), DO
 1. CASE 1: no mistake - do nothing
 2. CASE 2: \(t(x) = 1 \) but \(w \cdot x < \theta - w_i \leftarrow 2w_i \) if \(x_i = 1 \) (promotion/strengthening)
 3. CASE 3: \(t(x) = 0 \) but \(w \cdot x \geq \theta \) - \(w_i \leftarrow w_i / 2 \) if \(x_i = 1 \) (demotion/weakening)
 – RETURN final \(w \)

• Winnow Algorithm Learns \textbf{Linear Threshold (LT)} Functions

• Converting to Disjunction Learning
 – Replace \textit{demotion} with \textit{elimination}
 – Change weight values to 0 instead of halving
 – Why does this work?
Winnow: An Example

\[t(x) = c(x) = x_1 \lor x_2 \lor x_{1023} \lor x_{1024} \]

- Initialize: \(\theta = n = 1024, w = (1, 1, 1, ..., 1) \)
- \((1, 1, 1, ..., 1), \) \(w \cdot x \geq \theta \) \(w = (1, 1, 1, ..., 1) \) OK
- \((0, 0, 0, ..., 0), \) \(w \cdot x < \theta \) \(w = (1, 1, 1, ..., 1) \) OK
- \((1, 0, 0, ..., 0), \) \(w \cdot x < \theta \) \(w = (2, 1, 1, ..., 1) \) mistake
- \((1, 0, 1, 1, 0, ..., 0), \) \(w \cdot x < \theta \) \(w = (4, 1, 2, 2, ..., 1) \) mistake
- \((1, 0, 1, 0, 0, ..., 1), \) \(w \cdot x < \theta \) \(w = (8, 1, 4, 2, ..., 2) \) mistake
- \(w = (512, 1, 256, 256, ..., 256) \)

- Promotions for each good variable: \(\lfloor \log(n) \rfloor < \lfloor \log(n) \rfloor + 1 = \log(2n) \)
- \((1, 0, 1, 0, 0, ..., 1), \) \(w \cdot x \geq \theta \) \(w = (512, 1, 256, 256, ..., 256) \) OK
- \((0, 0, 1, 0, 1, 1, ..., 0), \) \(w \cdot x < \theta \) \(w = (512, 1, 0, 256, 0, 0, ..., 256) \) mistake
- Last example: elimination rule (bit mask)

- Final Hypothesis: \(w = (1024, 1024, 0, 0, 1, 32, ..., 1024, 1024) \)

Winnow: Mistake Bound

- Claim: \(\text{Train-Winnow} \) makes \(O(k \log n) \) mistakes on \(k \)-disjunctions (\(\leq k \) of \(n \))
- Proof
 - \(u = \) number of mistakes on positive examples (promotions)
 - \(v = \) number of mistakes on negative examples (demotions/eliminations)
 - \(\text{Lemma 1:} \ u < k \log (2n) = k (\log n + 1) = k \log n + k = O(k \log n) \)
 - Proof
 - A weight that corresponds to a good variable is only promoted
 - When these weights reach \(n \) there will be no more false positives
 - \(\text{Lemma 2:} \ v < 2(u + 1) \)
 - Proof
 - Total weight \(W = n \) initially
 - False positive: \(W(t+1) < W(t) + n \) - in worst case, every variable promoted
 - False negative: \(W(t+1) < W(t) - n/2 \) - elimination of a bad variable
 - \(0 < W < n + un - n/2 \Rightarrow v < 2(u + 1) \)
 - Number of mistakes: \(u + v < 3u + 2 = O(k \log n) \), Q.E.D.
Extensions to Winnow

- **Train-Winnow** learns monotone disjunctions
 - Change of representation: can convert a general disjunctive formula
 - Duplicate each variable: \(x \rightarrow \{y_+, y_-\} \)
 - \(y_+ \) denotes \(x \); \(y_- \) denotes \(\neg x \)
 - \(2n \) variables - but can now learn general disjunctions!
 - NB: we're not finished
 - \((y_+, y_-) \) are coupled
 - Need to keep two weights for each (original) variable and update both (how?)

- **Robust Winnow**
 - Adversarial game: may change \(c \) by adding (at cost 1) or deleting a variable \(x \)
 - Learner: makes prediction, then is told correct answer
 - **Train-Winnow-R**: same as **Train-Winnow**, but with lower weight bound of 1/2
 - Claim: **Train-Winnow-R** makes \(O(k \log n) \) mistakes (\(k = \) total cost of adversary)
 - Proof: generalization of previous claim

NeuroSolutions and SNNS

- **NeuroSolutions 3.0 Specifications**
 - Commercial ANN simulation environment (http://www.nd.com) for Windows NT
 - Supports multiple ANN architectures and training algorithms (temporal, modular)
 - Produces embedded systems
 - Extensive data handling and visualization capabilities
 - Fully modular (object-oriented) design
 - Code generation and dynamic link library (DLL) facilities
 - Benefits
 - Portability, parallelism: code tuning; fast offline learning
 - Dynamic linking: extensibility for research and development

- **Stuttgart Neural Network Simulator (SNNS) Specifications**
 - Open source ANN simulation environment for Linux
 - http://www.informatik.uni-stuttgart.de/ipvr/bv/projekte/snns/
 - Supports multiple ANN architectures and training algorithms
 - Very extensive visualization facilities
 - Similar portability and parallelization benefits
Terminology

- Neural Networks (NNs): Parallel, Distributed Processing Systems
 - Biological NNs and artificial NNs (ANNs)
 - Perceptron aka Linear Threshold Gate (LTG), Linear Threshold Unit (LTU)
 - Model neuron
 - Combination and activation (transfer, squashing) functions
- Single-Layer Networks
 - Learning rules
 - Hebbian: strengthening connection weights when both endpoints activated
 - Perceptron: minimizing total weight contributing to errors
 - Delta Rule (LMS Rule, Widrow-Hoff): minimizing sum squared error
 - Winnow: minimizing classification mistakes on LTU with multiplicative rule
 - Weight update regime
 - Batch mode: cumulative update (all examples at once)
 - Incremental mode: non-cumulative update (one example at a time)
- Perceptron Convergence Theorem and Perceptron Cycling Theorem

Summary Points

- Neural Networks: Parallel, Distributed Processing Systems
 - Biological and artificial (ANN) types
 - Perceptron (LTU, LTG): model neuron
- Single-Layer Networks
 - Variety of update rules
 - Multiplicative (Hebbian, Winnow), additive (gradient: Perceptron, Delta Rule)
 - Batch versus incremental mode
 - Various convergence and efficiency conditions
 - Other ways to learn linear functions
 - Linear programming (general-purpose)
 - Probabilistic classifiers (some assumptions)
- Advantages and Disadvantages
 - “Disadvantage” (tradeoff): simple and restrictive
 - “Advantage”: perform well on many realistic problems (e.g., some text learning)
- Next: Multi-Layer Perceptrons, Backpropagation, ANN Applications