Artificial Neural Networks (ANNs):
More Perceptrons and Winnow

Wednesday, 08 February 2007

William H. Hsu
Department of Computing and Information Sciences, KSU

Readings:
Sections 4.1-4.4, Mitchell
Section 2.2.6, Shavlik and Dietterich (Rosenblatt)
Section 2.4.5, Shavlik and Dietterich (Minsky and Papert)

Lecture Outline

• Textbook Reading: Sections 4.1-4.4, Mitchell
• Read “The Perceptron”, F. Rosenblatt; “Learning”, M. Minsky and S. Papert
• Next Lecture: 4.5-4.9, Mitchell; “The MLP”, Bishop; Chapter 8, RHW
• This Week’s Paper Review: “Discriminative Models for IR”, Nallapati
• This Month: Numerical Learning Models (e.g., Neural/Bayesian Networks)

The Perceptron
– Today: as a linear threshold gate/unit (LTG/LTU)
 • Expressive power and limitations; ramifications
 • Convergence theorem
 • Derivation of a gradient learning algorithm and training \(\text{Delta aka LMS}\) rule
– Next lecture: as a neural network element (especially in multiple layers)

The Winnow
– Another linear threshold model
– Learning algorithm and training rule
Review:
ALVINN and Feedforward ANN Topology

- Pomerleau et al
 - Drives 70mph on highways
Review: The Perceptron

Perceptron: Single Neuron Model
- *aka* Linear Threshold Unit (LTU) or Linear Threshold Gate (LTG)
- Net input to unit: defined as linear combination
 \[\sum_{i=0}^{n} w_i x_i \]
- Output of unit: threshold (activation) function on net input (threshold \(\theta = w_0 \))

Perceptron Networks
- Neuron is modeled using a unit connected by weighted links \(w_i \) to other units
- Multi-Layer Perceptron (MLP): next lecture

Review: Linear Separators

Functional Definition
- \(f(x) = 1 \) if \(w_1 x_1 + w_2 x_2 + \ldots + w_n x_n \geq \theta, 0 \) otherwise
- \(\theta \): threshold value

Linearly Separable Functions
- *NB: \(D \) is LS does not necessarily imply \(c(x) = f(x) \) is LS!
- Disjunctions: \(c(x) = x_1' \lor x_2' \lor \ldots \lor x_m' \)
- \(m \) of \(n \): \(c(x) = \text{at least } 3 \) of \((x_1', x_2', \ldots, x_m') \)
- Exclusive OR (XOR): \(c(x) = x_1 \oplus x_2 \)
- General DNF: \(c(x) = T_1 \lor T_2 \lor \ldots \lor T_m; T_i = l_1 \land l_2 \land \ldots \land l_k \)

Change of Representation Problem
- Can we transform non-LS problems into LS ones?
- Is this meaningful? Practical?
- Does it represent a significant fraction of real-world problems?
Review:
Perceptron Convergence

• Perceptron Convergence Theorem
 – Claim: If there exist a set of weights that are consistent with the data (i.e., the data is linearly separable), the perceptron learning algorithm will converge
 – Proof: well-founded ordering on search region (“wedge width” is strictly decreasing) - see Minsky and Papert, 11.2-11.3
 – Caveat 1: How long will this take?
 – Caveat 2: What happens if the data is not LS?

• Perceptron Cycling Theorem
 – Claim: If the training data is not LS the perceptron learning algorithm will eventually repeat the same set of weights and thereby enter an infinite loop
 – Proof: bound on number of weight changes until repetition; induction on \(n \), the dimension of the training example vector - MP, 11.10

• How to Provide More Robustness, Expressivity?
 – Objective 1: develop algorithm that will find closest approximation (today)
 – Objective 2: develop architecture to overcome representational limitation (next lecture)

Gradient Descent: Principle

• Understanding Gradient Descent for Linear Units
 – Consider simpler, unthresholded linear unit:
 \[
 o(x) = \text{net}(x) = \sum_{i=0}^{n} w_i x_i
 \]
 – Objective: find “best fit” to \(D \)

• Approximation Algorithm
 – Quantitative objective: minimize error over training data set \(D \)
 – Error function: sum squared error (SSE)
 \[
 E[w] = \text{error}_o[w] = \frac{1}{2} \sum_{i=0}^{n} (t(x_i) - o(x_i))^2
 \]

• How to Minimize?
 – Simple optimization
 – Move in direction of steepest gradient in weight-error space
 • Computed by finding tangent
 • i.e. partial derivatives (of \(E \)) with respect to weights (\(w_i \))
Gradient Descent: Derivation of Delta/LMS (Widrow-Hoff) Rule

- Definition: Gradient

\[\nabla E[w] = \begin{bmatrix} \frac{\partial E}{\partial w_1} \\ \frac{\partial E}{\partial w_2} \\ \vdots \\ \frac{\partial E}{\partial w_n} \end{bmatrix} \]

- Modified Gradient Descent Training Rule

\[\Delta w = -\nabla E[w] \]

\[\Delta w_i = -r \frac{\partial E}{\partial w_i} \]

\[\frac{\partial E}{\partial w_i} = -\frac{1}{2} \sum_{x \in D} \frac{\partial}{\partial w_i} (t(x) - o(x))^2 = -\frac{1}{2} \sum_{x \in D} \frac{\partial}{\partial w_i} (t(x) - o(x))^2 \]

\[= -\frac{1}{2} \sum_{x \in D} \left[2(t(x) - o(x)) \frac{\partial}{\partial w_i} (t(x) - o(x)) + (t(x) - o(x)) \frac{\partial}{\partial w_i} (t(x) - o(x)) \right] = \sum_{x \in D} (t(x) - o(x)) \frac{\partial}{\partial w_i} (t(x) - o(x)) \]

\[\frac{\partial E}{\partial w_i} = \sum_{x \in D} [(t(x) - o(x))(x_i)] \]

Algorithm using Delta/LMS Rule

- Algorithm **Gradient-Descent** \((D, r)\)
 - Each training example is a pair of the form \(<x, t(x)>\), where \(x\) is the vector of input values and \(t(x)\) is the output value. \(r\) is the learning rate (e.g., 0.05)
 - Initialize all weights \(w_i\) to (small) random values
 - UNTIL the termination condition is met, DO
 - Initialize each \(\Delta w_i\) to zero
 - FOR each \(<x, t(x)>\) in \(D\), DO
 - Input the instance \(x\) to the unit and compute the output \(o\)
 - FOR each linear unit weight \(w_i\), DO
 - \(\Delta w_i \leftarrow \Delta w_i + r(t - o)x_i\)
 - \(w_i \leftarrow w_i + \Delta w_i\)
 - RETURN final \(w\)
 - Mechanics of Delta Rule
 - Gradient is based on a derivative
 - Significance: later, will use nonlinear activation functions (aka transfer functions, squashing functions)
LS Concepts: Can Achieve Perfect Classification
- Example A: perceptron training rule converges
Non-LS Concepts: Can Only Approximate
- Example B: not LS; delta rule converges, but can’t do better than 3 correct
- Example C: not LS; better results from delta rule
Weight Vector $w = \text{Sum of Misclassified } x \in D$
- Perceptron: minimize w
- Delta Rule: minimize error \equiv distance from separator (i.e., maximize $\frac{\partial E}{\partial w}$)

Incremental (Stochastic) Gradient Descent

- Batch Mode Gradient Descent
 - UNTIL the termination condition is met, DO
 1. Compute the gradient $\nabla E_D[w]$
 2. $w \leftarrow w - r \nabla E_D[w]$
 - RETURN final w
- Incremental (Online) Mode Gradient Descent
 - UNTIL the termination condition is met, DO
 FOR each $<x, t(x)>$ in D, DO
 1. Compute the gradient $\nabla E_x[w]$
 2. $w \leftarrow w - r \nabla E_x[w]$
 - RETURN final w
- Emulating Batch Mode
 \[E_D[w] = \frac{1}{2} \sum_{x \in D} (t(x) - o(x))^2 \]
 \[E_x[w] = \frac{1}{2} (t(x) - o(x))^2 \]
 - Incremental gradient descent can approximate batch gradient descent arbitrarily closely if r made small enough
Multi-Layer Networks of Nonlinear Units

- **Nonlinear Units**
 - Recall: activation function $\text{sgn}(w \cdot x)$
 - Nonlinear activation function: generalization of sgn

- **Multi-Layer Networks**
 - A specific type: Multi-Layer Perceptrons (MLPs)
 - Definition: a multi-layer feedforward network is composed of an input layer, one or more hidden layers, and an output layer
 - “Layers”: counted in weight layers (e.g., 1 hidden layer = 2-layer network)
 - Only hidden and output layers contain perceptrons (threshold or nonlinear units)

- **MLPs in Theory**
 - Network (of 2 or more layers) can represent any function (arbitrarily small error)
 - Training even 3-unit multi-layer ANNs is \(\text{NP}\)-hard (Blum and Rivest, 1992)

- **MLPs in Practice**
 - Finding or designing effective networks for arbitrary functions is difficult
 - Training is very computation-intensive even when structure is “known”

Nonlinear Activation Functions

- **Sigmoid Activation Function**
 - Linear threshold gate activation function: $\text{sgn}(w \cdot x)$
 - Nonlinear activation (aka transfer, squashing) function: generalization of sgn
 - σ is the sigmoid function
 - Can derive gradient rules to train
 - One sigmoid unit
 - Multi-layer, feedforward networks of sigmoid units (using backpropagation)

- **Hyperbolic Tangent Activation Function**
 - $\text{tanh}(\text{net}) = \frac{e^{\text{net}} - e^{-\text{net}}}{e^{\text{net}} + e^{-\text{net}}}$
Error Gradient for a Sigmoid Unit

- **Recall: Gradient of Error Function**
 \[\nabla E(\theta) = \left[\frac{\partial E}{\partial w_1}, \frac{\partial E}{\partial w_2}, \ldots, \frac{\partial E}{\partial w_n} \right] \]

- **Gradient of Sigmoid Activation Function**
 \[
 \frac{\partial E}{\partial w_i} = \frac{1}{2} \sum_{(x, y) \in D} (t(x) - o(x))^2 = \frac{1}{2} \sum_{x, \sigma(x) \in \Theta} \left(\frac{\partial}{\partial w_i} (t(x) - o(x))^2 \right) \\
 = \frac{1}{2} \sum_{(x, \sigma(x) \in \Theta)} \left[2(t(x) - o(x)) \frac{\partial}{\partial w_i} (t(x) - o(x)) \right] = \sum_{x, \sigma(x) \in \Theta} \left(\frac{\partial o(x)}{\partial \sigma(x)} \frac{\partial \sigma(x)}{\partial w_i} \right) \\
 = -\sum_{(x, \sigma(x) \in \Theta)} \left[\frac{\partial (t(x) - o(x))}{\partial \sigma(x)} \frac{\partial o(x)}{\partial \sigma(x)} \frac{\partial \sigma(x)}{\partial w_i} \right] \\
 \]

- **But We Know:**
 \[
 \frac{\partial o(x)}{\partial \sigma(x)} = o(x) \sigma(x) \\
 \frac{\partial \sigma(x)}{\partial w_i} = x_i \\
 \]

- **So:**
 \[
 \frac{\partial E}{\partial w_i} = -\sum_{(x, \sigma(x) \in \Theta)} \left[\frac{\partial (t(x) - o(x))}{\partial \sigma(x)} o(x)(1-o(x)) x_i \right] \\
 \]

Learning Disjunctions

- **Hidden Disjunction to Be Learned**
 - \(c(x) = x_1' \lor x_2' \lor \ldots \lor x_{m'} \) (e.g., \(x_2 \lor x_4 \lor x_5 \ldots \lor x_{100} \))
 - Number of disjunctions: \(3^n \) (each \(x_i \); included, negation included, or excluded)
 - Change of representation: can turn into a monotone disjunctive formula?
 - How?
 - How many disjunctions then?
 - Recall from COLT: mistake bounds
 - \(\log (|C|) = O(n) \)
 - Elimination algorithm makes \(O(n) \) mistakes

- **Many Irrelevant Attributes**
 - Suppose only \(k << n \) attributes occur in disjunction \(c \) i.e., \(\log (|C|) = O(k \log n) \)
 - Example: learning natural language (e.g., learning over text)
 - Idea: use a Winnow - perceptron-type LTU model (Littlestone, 1988)
 - Strengthen weights for false positives
 - Learn from negative examples too: weaken weights for false negatives
Winnow Algorithm

- **Algorithm Train-Winnow \((D)\)**
 - Initialize: \(\theta = n, w_i = 1 \)
 - UNTIL the termination condition is met, DO
 - FOR each \(<x, t(x)>\) in \(D\), DO
 1. CASE 1: no mistake - do nothing
 2. CASE 2: \(t(x) = 1 \) but \(w \cdot x < \theta \) \(w_i \leftarrow 2w_i \) if \(x_i = 1 \) (promotion/strengthening)
 3. CASE 3: \(t(x) = 0 \) but \(w \cdot x \geq \theta \) \(w_i \leftarrow w_i / 2 \) if \(x_i = 1 \) (demotion/weakening)
 - RETURN final \(w \)

- Winnow Algorithm Learns Linear Threshold (LT) Functions
- Converting to Disjunction Learning
 - Replace demotion with elimination
 - Change weight values to 0 instead of halving
 - Why does this work?

Terminology

- **Neural Networks (NNs): Parallel, Distributed Processing Systems**
 - Biological NNs and artificial NNs (ANNs)
 - Perceptron aka Linear Threshold Gate (LTG), Linear Threshold Unit (LTU)
 - Model neuron
 - Combination and activation (transfer, squashing) functions
- **Single-Layer Networks**
 - Learning rules
 - Hebbian: strengthening connection weights when both endpoints activated
 - Perceptron: minimizing total weight contributing to errors
 - Delta Rule (LMS Rule, Widrow-Hoff): minimizing sum squared error
 - Winnow: minimizing classification mistakes on LTU with multiplicative rule
 - Weight update regime
 - Batch mode: cumulative update (all examples at once)
 - Incremental mode: non-cumulative update (one example at a time)
- **Perceptron Convergence Theorem and Perceptron Cycling Theorem**
Summary Points

• Neural Networks: Parallel, Distributed Processing Systems
 – Biological and artificial (ANN) types
 – Perceptron (LTU, LTG): model neuron

• Single-Layer Networks
 – Variety of update rules
 • Multiplicative (Hebbian, Winnow), additive (gradient: Perceptron, Delta Rule)
 • Batch versus incremental mode
 – Various convergence and efficiency conditions
 – Other ways to learn linear functions
 • Linear programming (general-purpose)
 • Probabilistic classifiers (some assumptions)

• Advantages and Disadvantages
 – “Disadvantage” (tradeoff): simple and restrictive
 – “Advantage”: perform well on many realistic problems (e.g., some text learning)

• Next: Multi-Layer Perceptrons, Backpropagation, ANN Applications