Lecture 15 of 42

Genetic and Evolutionary Computation 1 of 3:
The Simple Genetic Algorithm

Friday, 16 February 2007

William H. Hsu
Department of Computing and Information Sciences, KSU
http://www.kddresearch.org
http://www.cis.ksu.edu/~bhsu

Readings:
Sections 9.1-9.4, Mitchell
Chapter 1, Sections 6.1-6.5, Goldberg
Section 3.3.4, Shavlik and Dietterich (Booker, Goldberg, Holland)

Lecture Outline

• Readings
 – Sections 9.1-9.4, Mitchell
 – Suggested: Chapter 1, Sections 6.1-6.5, Goldberg
• Evolutionary Computation
 – Biological motivation: process of natural selection
 – Framework for search, optimization, and learning
• Prototypical (Simple) Genetic Algorithm
 – Components: selection, crossover, mutation
 – Representing hypotheses as individuals in GAs
• An Example: GA-Based Inductive Learning (GABIL)
• GA Building Blocks (aka Schemas)
• Taking Stock (Course Review): Where We Are, Where We’re Going
Simple Genetic Algorithm (SGA)

- Algorithm *Simple-Genetic-Algorithm (Fitness, Fitness-Threshold, p, r, m)*

 // p: population size; r: replacement rate (aka generation gap width), m: string size

 - P ← p random hypotheses // initialize population
 - FOR each h in P DO \(f[h] \leftarrow \text{Fitness}(h) \) // evaluate Fitness: hypothesis \(\rightarrow \) R
 - WHILE (Max(\(f \)) < Fitness-Threshold) DO
 - 1. Select: Probabilistically select (1 - r)/p members of P to add to \(P_{S} \)
 - 2. Crossover: Probabilistically select \((r \cdot p)/2\) pairs of hypotheses from P
 - FOR each pair \(<h_{1}, h_{2}>\) DO
 - \(PS \leftarrow \text{Crossover}(<h_{1}, h_{2}>) \) // \(PS[t+1] = P_{S}[t] + <\text{offspring}_{1}, \text{offspring}_{2}>\)
 - 3. Mutate: Invert a randomly selected bit in \(m \cdot p \) random members of \(PS \)
 - 4. Update: \(P \leftarrow P_{S} \)
 - 5. Evaluate: FOR each \(h \) in P DO \(f[h] \leftarrow \text{Fitness}(h) \)
 - RETURN the hypothesis \(h \) in P that has maximum fitness \(f[h] \)

GA-Based Inductive Learning (GABIL)

- GABIL System [Dejong *et al.*, 1993]

 - Given: concept learning problem and examples
 - Learn: disjunctive set of propositional rules
 - Goal: results competitive with those for current decision tree learning algorithms (e.g., C4.5)

- Fitness Function: \(\text{Fitness}(h) = (\text{Correct}(h))^{2} \)

- Representation

 - Rules: IF \(a_{1} = T \land a_{2} = F \) THEN \(c = T \); IF \(a_{2} = T \) THEN \(c = F \)
 - Bit string encoding: \(a_{1}[10] \cdot a_{2}[01] \cdot c[1] \cdot a_{1}[11] \cdot a_{2}[10] \cdot c[0] = 1001111100 \)

- Genetic Operators

 - Want variable-length rule sets
 - Want only well-formed bit string hypotheses
Crossover: Variable-Length Bit Strings

- **Basic Representation**
 - Start with

 \[
 \begin{array}{cccc}
 a_1 & a_2 & c & a_1 & a_2 & c \\
 h_1 & 1 & 0 & 0 & 1 & 1 \\
 h_2 & 0 & 1 & 1 & 1 & 0 & 0 \\
 \end{array}
 \]
 - Idea: allow crossover to produce variable-length offspring

- **Procedure**
 - 1. Choose crossover points for \(h_1 \), e.g., after bits 1, 8
 - 2. Now restrict crossover points in \(h_2 \) to those that produce bitstrings with well-defined semantics, e.g., \(<1, 3>, <1, 8>, <6, 8>\)

- **Example**
 - Suppose we choose \(<1, 3>\)
 - Result

 \[
 \begin{array}{cccccc}
 a_1 & a_2 & c & a_1 & a_2 & c \\
 h_3 & 1 & 1 & 0 & 1 & 1 \\
 h_4 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\
 \end{array}
 \]

GABIL Extensions

- **New Genetic Operators**
 - Applied probabilistically
 - 1. **AddAlternative**: generalize constraint on \(a_i \) by changing a 0 to a 1
 - 2. **DropCondition**: generalize constraint on \(a_i \) by changing every 0 to a 1

- **New Field**
 - Add fields to bit string to decide whether to allow the above operators

 \[
 \begin{array}{ccccccc}
 a_1 & a_2 & c & a_1 & a_2 & c & AA & DC \\
 01 & 11 & 0 & 10 & 01 & 0 & 1 & 0 \\
 \end{array}
 \]
 - So now the learning strategy also evolves!
 - aka genetic wrapper
GABIL Results

• Classification Accuracy
 – Compared to symbolic rule/tree learning methods
 • C4.5 [Quinlan, 1993]
 • ID5R
 • AQ14 [Michalski, 1986]
 – Performance of GABIL comparable
 • Average performance on a set of 12 synthetic problems: 92.1% test accuracy
 • Symbolic learning methods ranged from 91.2% to 96.6%

• Effect of Generalization Operators
 – Result above is for GABIL without AA and DC
 – Average test set accuracy on 12 synthetic problems with AA and DC: 95.2%

Building Blocks
(Schemas)

• Problem
 – How to characterize evolution of population in GA?
 – Goal
 • Identify basic building block of GAs
 • Describe family of individuals

• Definition: Schema
 – String containing 0, 1, * (“don’t care”)
 – Typical schema: 10**0*
 – Instances of above schema: 101101, 100000, ...

• Solution Approach
 – Characterize population by number of instances representing each possible schema
 – $m(s, t)$ = number of instances of schema s in population at time t
Source: Kansas State University

Selection and Building Blocks

- **Restricted Case: Selection Only**
 - \(\bar{f}(t) \) = average fitness of population at time \(t \)
 - \(m(s, t) \) = number of instances of schema \(s \) in population at time \(t \)
 - \(\bar{u}(s, t) \) = average fitness of instances of schema \(s \) at time \(t \)

- **Quantities of Interest**
 - Probability of selecting \(h \) in one selection step
 \[
 P(h) = \frac{f(h)}{\sum_{h_i} f(h_i)}
 \]
 - Probability of selecting an instance of \(s \) in one selection step
 \[
 P(h \in s) = \sum_{h \sim h_i} \frac{f(h)}{n \cdot f(t)} = \frac{\bar{u}(s, t)}{n \cdot f(t)} \cdot m(s, t)
 \]
 - Expected number of instances of \(s \) after \(n \) selections
 \[
 E[m(s, t + 1)] = \frac{\bar{u}(s, t)}{f(t)} \cdot m(s, t)
 \]

Schema Theorem

- **Theorem**
 \[
 E[m(s, t + 1)] \geq \bar{u}(s, t) \cdot m(s, t) \cdot \frac{1 - p_c}{1 - \left(1 - \frac{d}{l}
ight)} \cdot \left(1 - p_m\right)^{\alpha(s)}
 \]

- \(m(s, t) \) = number of instances of schema \(s \) in population at time \(t \)
- \(f(t) \) = average fitness of population at time \(t \)
- \(\bar{u}(s, t) \) = average fitness of instances of schema \(s \) at time \(t \)
- \(p_c \) = probability of single point crossover operator
- \(p_m \) = probability of mutation operator
- \(l \) = length of individual bit strings
- \(\alpha(s) \) = number of defined (non "*"*) bits in \(s \)
- \(d(s) \) = distance between rightmost, leftmost defined bits in \(s \)

- **Intuitive Meaning**
 - “The expected number of instances of a schema in the population tends toward its relative fitness”
 - A fundamental theorem of GA analysis and design
Terminology

- **Evolutionary Computation (EC):** Models Based on Natural Selection
- **Genetic Algorithm (GA) Concepts**
 - **Individual:** single entity of model (corresponds to hypothesis)
 - **Population:** collection of entities in competition for survival
 - **Generation:** single application of selection and crossover operations
 - **Schema aka building block:** descriptor of GA population (e.g., 10**0**)
 - **Schema theorem:** representation of schema proportional to its relative fitness
- **Simple Genetic Algorithm (SGA) Steps**
 - **Selection**
 - Proportionate reproduction (aka roulette wheel): \(P(\text{individual}) \propto f(\text{individual}) \)
 - **Tournament:** let individuals compete in pairs or tuples; eliminate unfit ones
 - **Crossover**
 - Single-point: 11101001000 × 00001010101 → { 11101010101, 00001001000 }
 - Two-point: 11101001000 × 00001010101 → { 11001011000, 00101000101 }
 - Uniform: 11101001000 × 00001010101 → { 10001000100, 01101011001 }
 - **Mutation:** single-point (“bit flip”), multi-point
- **Schema Theorem:** Propagation of Building Blocks

Summary Points

- **Evolutionary Computation**
 - **Motivation:** process of natural selection
 - Limited population; individuals compete for membership
 - Method for parallelizing and stochastic search
 - **Framework for problem solving:** search, optimization, learning
- **Prototypical (Simple) Genetic Algorithm (GA)**
 - **Steps**
 - Selection: reproduce individuals probabilistically, in proportion to fitness
 - Crossover: generate new individuals probabilistically, from pairs of “parents”
 - Mutation: modify structure of individual randomly
 - **How to represent hypotheses as individuals in GAs**
- **An Example:** GA-Based Inductive Learning (GABIL)
 - **Schema Theorem:** Propagation of Building Blocks
- **Next Lecture:** Genetic Programming, The Movie