SVM Continued and Intro to Bayesian Learning: *Max a Posteriori* and Max Likelihood Estimation

Thursday, 22 February 2007

William H. Hsu
Department of Computing and Information Sciences, KSU
http://www.kddresearch.org

Readings:
Sections 6.1-6.5, Mitchell

Lecture Outline

- Read Sections 6.1-6.5, Mitchell
- Overview of Bayesian Learning
 - Framework: using probabilistic criteria to generate hypotheses of all kinds
 - Probability: foundations
- Bayes’s Theorem
 - Definition of conditional (posterior) probability
 - Ramifications of Bayes’s Theorem
 - Answering probabilistic queries
 - MAP hypotheses
- Generating Maximum *A Posteriori (MAP)* Hypotheses
- Generating Maximum Likelihood Hypotheses
- Next Week: Sections 6.6-6.13, Mitchell; Roth; Pearl and Verma
 - More Bayesian learning: MDL, BOC, Gibbs, Simple (Naïve) Bayes
 - Learning over text
Review: Support Vector Machines (SVM)

Roadmap
Selection and Building Blocks

- **Restricted Case: Selection Only**
 - \(f(t) \) = average fitness of population at time \(t \)
 - \(m(s, t) \) = number of instances of schema \(s \) in population at time \(t \)
 - \(\bar{u}(s, t) \) = average fitness of instances of schema \(s \) at time \(t \)

- **Quantities of Interest**
 - Probability of selecting \(h \) in one selection step:
 \[
 P(h) = \frac{f(h)}{\sum_{i} f(h)}
 \]
 - Probability of selecting an instance of \(s \) in one selection step:
 \[
 P(h \in s) = \sum_{i} \frac{f(h)}{n \cdot f(t)} = \frac{\bar{u}(s, t)}{n \cdot f(t)}
 \]
 - Expected number of instances of \(s \) after \(n \) selections:
 \[
 E[m(s, t + 1)] = \frac{\bar{u}(s, t)}{f(t)}
 \]

Bayesian Learning

- **Framework: Interpretations of Probability [Cheeseman, 1985]**
 - Bayesian subjectivist view
 - A measure of an agent’s belief in a proposition
 - Proposition denoted by random variable (sample space: range)
 - e.g., \(Pr(\text{Outlook} = \text{Sunny}) = 0.8 \)
 - Frequentist view: probability is the frequency of observations of an event
 - Logistic view: probability is inferential evidence in favor of a proposition

- **Typical Applications**
 - HCI: learning natural language; intelligent displays; decision support
 - Approaches: prediction; sensor and data fusion (e.g., bioinformatics)

- **Prediction: Examples**
 - Measure relevant parameters: temperature, barometric pressure, wind speed
 - Make statement of the form \(Pr(\text{Tomorrow’s-Weather} = \text{Rain}) = 0.5 \)
 - College admissions: \(Pr(\text{Acceptance}) = p \)
 - Plain beliefs: unconditional acceptance (\(p = 1 \)) or categorical rejection (\(p = 0 \))
 - Conditional beliefs: depends on reviewer (use probabilistic model)
Two Roles for Bayesian Methods

- **Practical Learning Algorithms**
 - Naïve Bayes (aka simple Bayes)
 - Bayesian belief network (BBN) structure learning and parameter estimation
 - Combining prior knowledge (prior probabilities) with observed data
 - A way to incorporate background knowledge (BK), aka domain knowledge
 - Requires prior probabilities (e.g., annotated rules)
- **Useful Conceptual Framework**
 - Provides “gold standard” for evaluating other learning algorithms
 - Bayes Optimal Classifier (BOC)
 - Stochastic Bayesian learning: Markov chain Monte Carlo (MCMC)
 - Additional insight into Occam’s Razor (MDL)

Probabilistic Concepts versus Probabilistic Learning

- **Two Distinct Notions: Probabilistic Concepts, Probabilistic Learning**
- **Probabilistic Concepts**
 - Learned concept is a function, $c: X \rightarrow [0, 1]$
 - $c(x)$, the target value, denotes the probability that the label 1 (i.e., True) is assigned to x
 - Previous learning theory is applicable (with some extensions)
- **Probabilistic (i.e., Bayesian) Learning**
 - Use of a probabilistic criterion in selecting a hypothesis h
 - e.g., “most likely” h given observed data D: MAP hypothesis
 - e.g., h for which D is “most likely”: max likelihood (ML) hypothesis
 - May or may not be stochastic (i.e., search process might still be deterministic)
 - NB: h can be deterministic (e.g., a Boolean function) or probabilistic
Probability: Basic Definitions and Axioms

- Sample Space (\(\Omega\)): Range of a Random Variable \(X\)
- Probability Measure \(Pr(*)\)
 - \(\Omega\) denotes a range of "events": \(X: \Omega\)
 - Probability \(Pr\), or \(P\), is a measure over \(\Omega\)
 - In a general sense, \(Pr(X = x \in \Omega)\) is a measure of belief in \(X = x\)
 - \(P(X = x) = 0\) or \(P(X = x) = 1\): plain (aka categorical) beliefs (can’t be revised)
 - All other beliefs are subject to revision
- Kolmogorov Axioms
 - 1. \(\forall x \in \Omega : 0 \leq P(X = x) \leq 1\)
 - 2. \(P(\Omega) = \sum_{x \in \Omega} P(X = x) = 1\)
 - 3. \(\forall X_1, X_2, ..., i \neq j \Rightarrow X_i \land X_j = \emptyset\).

\[P\left(\bigcup_{i,j} X_j\right) = \sum_{i,t} P(X_i) \]

- Joint Probability: \(P(X_1 \land X_2)\) = Probability of the Joint Event \(X_1 \land X_2\)
- Independence: \(P(X_1, X_2) = P(X_1) \cdot P(X_2)\)

Bayes’s Theorem

- Theorem
 \[P(h \mid D) = \frac{P(D \mid h) P(h)}{P(D)} = \frac{P(h \land D)}{P(D)} \]
- \(P(h)\) = Prior Probability of Hypothesis \(h\)
 - Measures initial beliefs (BK) before any information is obtained (hence prior)
- \(P(D)\) = Prior Probability of Training Data \(D\)
 - Measures probability of obtaining sample \(D\) (i.e., expresses \(D\))
- \(P(h \mid D)\) = Probability of \(h\) Given \(D\)
 - \(|\) denotes conditioning - hence \(P(h \mid D)\) is a conditional (aka posterior) probability
- \(P(D \mid h)\) = Probability of \(D\) Given \(h\)
 - Measures probability of observing \(D\) given that \(h\) is correct ("generative" model)
- \(P(h \land D)\) = Joint Probability of \(h\) and \(D\)
 - Measures probability of observing \(D\) and of \(h\) being correct
Choosing Hypotheses

- **Bayes’s Theorem**
 \[
 P(h | D) = \frac{P(D | h) P(h)}{P(D)} = \frac{P(h \wedge D)}{P(D)}
 \]

- **MAP Hypothesis**
 - Generally want most probable hypothesis given the training data
 - Define: \(\arg \max_{h \in \Omega} f(x) \) = the value of \(x \) in the sample space \(\Omega \) with the highest \(f(x) \)
 - Maximum \textit{a posteriori} hypothesis, \(h_{MAP} \)
 \[
 h_{MAP} = \arg \max_{h \in \Omega} P(h | D) = \arg \max_{h \in \Omega} \frac{P(D | h) P(h)}{P(D)} = \arg \max_{h \in \Omega} P(D | h) P(h)
 \]

- **ML Hypothesis**
 - Assume that \(p(h_i) = p(h_j) \) for all pairs \(i, j \) (uniform priors, i.e., \(P_H \sim \text{Uniform} \))
 - Can further simplify and choose the maximum likelihood hypothesis, \(h_{ML} \)
 \[
 h_{ML} = \arg \max_{h \in \mathcal{H}} P(D | h)
 \]

Bayes’s Theorem: Query Answering (QA)

- **Answering User Queries**
 - Suppose we want to perform intelligent inferences over a database \(DB \)
 - Scenario 1: \(DB \) contains records (instances), some “labeled” with answers
 - Scenario 2: \(DB \) contains probabilities (annotations) over propositions
 - QA: an application of probabilistic inference

- **QA Using Prior and Conditional Probabilities: Example**
 - Query: Does patient have cancer or not?
 - Suppose: patient takes a lab test and result comes back positive
 - Correct + result in only 98% of the cases in which disease is actually present
 - Correct - result in only 97% of the cases in which disease is not present
 - Only 0.008 of the entire population has this cancer
 - \(\alpha = P(\text{false negative for } H_0 = \text{Cancer}) = 0.02 \) (NB: for 1-point sample)
 - \(\beta = P(\text{false positive for } H_0 = \text{Cancer}) = 0.03 \) (NB: for 1-point sample)
 - \(P(\text{Cancer}) = 0.008 \quad P(+) | \text{Cancer} = 0.98 \quad P(+) | \neg \text{Cancer} = 0.03 \)
 - \(P(\neg \text{Cancer}) = 0.992 \quad P(-) | \text{Cancer} = 0.02 \quad P(-) | \neg \text{Cancer} = 0.97 \)
 - \(P(+) | H_0 \) \(P(H_0) = 0.0078 \), \(P(+) | H_A \) \(P(H_A) = 0.0298 \Rightarrow h_{MAP} = H_A = \neg \text{Cancer} \)
Basic Formulas for Probabilities

• Product Rule (Alternative Statement of Bayes’s Theorem)
 \[P(A \mid B) = \frac{P(A \land B)}{P(B)} \]
 – Proof: requires axiomatic set theory, as does Bayes’s Theorem

• Sum Rule
 \[P(A \lor B) = P(A) + P(B) - P(A \land B) \]
 – Sketch of proof (immediate from axiomatic set theory)
 – Draw a Venn diagram of two sets denoting events A and B
 – Let \(A \lor B \) denote the event corresponding to \(A \lor B \)

• Theorem of Total Probability
 – Suppose events \(A_1, A_2, \ldots, A_n \) are mutually exclusive and exhaustive
 – Mutually exclusive: \(i \neq j \Rightarrow A_i \land A_j = \emptyset \)
 – Exhaustive: \(\sum \ P(A_i) = 1 \)
 – Then
 \[P(B) = \sum_{i} P(B \mid A_i) \cdot P(A_i) \]
 – Proof: follows from product rule and 3rd Kolmogorov axiom

MAP and ML Hypotheses: A Pattern Recognition Framework

• Pattern Recognition Framework
 – Automated speech recognition (ASR), automated image recognition
 – Diagnosis

• Forward Problem: One Step in ML Estimation
 – Given: model \(h \), observations (data) \(D \)
 – Estimate: \(P(D \mid h) \), the “probability that the model generated the data”

• Backward Problem: Pattern Recognition / Prediction Step
 – Given: model \(h \), observations \(D \)
 – Maximize: \(P(h(X) = x \mid h, D) \) for a new \(X \) (i.e., find best \(x \))

• Forward-Backward (Learning) Problem
 – Given: model space \(H \), data \(D \)
 – Find: \(h \in H \) such that \(P(h \mid D) \) is maximized (i.e., MAP hypothesis)

• More Info
 – Emphasis on a particular \(H \) (the space of hidden Markov models)
Bayesian Learning Example: Unbiased Coin [1]

• Coin Flip
 – Sample space: $\Omega = \{\text{Head, Tail}\}$
 – Scenario: given coin is either fair or has a 60% bias in favor of Head
 • h_1: fair coin: $P(\text{Head}) = 0.5$
 • h_2: 60% bias towards Head: $P(\text{Head}) = 0.6$
 – Objective: to decide between default (null) and alternative hypotheses

• A Priori (aka Prior) Distribution on H
 – $P(h_1) = 0.75$, $P(h_2) = 0.25$
 – Reflects learning agent’s prior beliefs regarding H
 – Learning is revision of agent’s beliefs

• Collection of Evidence
 – First piece of evidence: $d = \text{a single coin toss, comes up Head}$
 – Q: What does the agent believe now?
 – A: Compute $P(d) = P(d | h_1) P(h_1) + P(d | h_2) P(h_2)$

 $P(\text{Head}) = 0.5 \cdot 0.75 + 0.6 \cdot 0.25 = 0.375 + 0.15 = 0.525$

• Bayesian Learning
 – Now apply Bayes’s Theorem
 • $P(h_1 | d) = P(d | h_1) P(h_1) / P(d) = 0.375 / 0.525 = 0.714$
 • $P(h_2 | d) = P(d | h_2) P(h_2) / P(d) = 0.15 / 0.525 = 0.286$
 • Belief has been revised downwards for h_1, upwards for h_2
 • The agent still thinks that the fair coin is the more likely hypothesis
 – Suppose we were to use the ML approach (i.e., assume equal priors)
 • Belief is revised upwards from 0.5 for h_1
 • Data then supports the bias coin better

Bayesian Learning Example: Unbiased Coin [2]

• Bayesian Inference: Compute $P(d) = P(d | h_1) P(h_1) + P(d | h_2) P(h_2)$
 – $P(\text{Head}) = 0.5 \cdot 0.75 + 0.6 \cdot 0.25 = 0.375 + 0.15 = 0.525$
 – This is the probability of the observation $d = \text{Head}$

• Bayesian Learning
 – Now apply Bayes’s Theorem
 • $P(h_1 | d) = P(d | h_1) P(h_1) / P(d) = 0.375 / 0.525 = 0.714$
 • $P(h_2 | d) = P(d | h_2) P(h_2) / P(d) = 0.15 / 0.525 = 0.286$
 • Belief has been revised downwards for h_1, upwards for h_2
 • The agent still thinks that the fair coin is the more likely hypothesis
 – Suppose we were to use the ML approach (i.e., assume equal priors)
 • Belief is revised upwards from 0.5 for h_1
 • Data then supports the bias coin better

• More Evidence: Sequence D of 100 coins with 70 heads and 30 tails
 – $P(D) = (0.5)^{50} \cdot (0.5)^{50} \cdot 0.75 + (0.6)^{70} \cdot (0.4)^{30} \cdot 0.25$
 – Now $P(h_1 | d) << P(h_2 | d)$
Brute Force MAP Hypothesis Learner

- Intuitive Idea: Produce Most Likely h Given Observed D
- Algorithm Find-MAP-Hypothesis (D)
 - 1. FOR each hypothesis $h \in H$
 - Calculate the conditional (i.e., posterior) probability:
 $$P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)}$$
 - 2. RETURN the hypothesis h_{MAP} with the highest conditional probability
 $$h_{MAP} = \arg \max_{h \in H} P(h \mid D)$$

Relation to Concept Learning

- Usual Concept Learning Task
 - Instance space X
 - Hypothesis space H
 - Training examples D
- Consider Find-S Algorithm
 - Given: D
 - Return: most specific h in the version space $\text{VS}_{H,D}$
- MAP and Concept Learning
 - Bayes’s Rule: Application of Bayes’s Theorem
 - What would Bayes’s Rule produce as the MAP hypothesis?
- Does Find-S Output A MAP Hypothesis?
Bayesian Concept Learning and Version Spaces

- Assumptions
 - Fixed set of instances \(<x_1, x_2, ..., x_m>\)
 - Let \(D\) denote the set of classifications: \(D = <c(x_1), c(x_2), ..., c(x_m)>\)
- Choose \(P(D | h)\)
 - \(P(D | h) = 1\) if \(h\) consistent with \(D\) (i.e., \(\forall x_i, h(x_i) = c(x_i)\))
 - \(P(D | h) = 0\) otherwise
- Choose \(P(h) \sim \text{Uniform}\)
 - Uniform distribution: \(P(h) = \frac{1}{|H|}\)
 - Uniform priors correspond to “no background knowledge” about \(h\)
 - Recall: maximum entropy
- MAP Hypothesis

 \[
 P(h|D) = \begin{cases}
 \frac{1}{|\text{VS}_{H,D}|} & \text{if } h \text{ is consistent with } D \\
 0 & \text{otherwise}
 \end{cases}
 \]

Evolution of Posterior Probabilities

- Start with Uniform Priors
 - Equal probabilities assigned to each hypothesis
 - Maximum uncertainty (entropy), minimum prior information

- Evidential Inference
 - Introduce data (evidence) \(D_1\): belief revision occurs
 - Learning agent revises conditional probability of inconsistent hypotheses to 0
 - Posterior probabilities for remaining \(h \in \text{VS}_{H,D}\) revised upward
 - Add more data (evidence) \(D_2\): further belief revision
Characterizing Learning Algorithms by Equivalent MAP Learners

Inductive System

Training Examples D

Hypothesis Space H

Candidate Elimination Algorithm

Output hypotheses

Equivalent Bayesian Inference System

Training Examples D

Hypothesis Space H

Brute Force MAP Learner

Output hypotheses

Prior knowledge made explicit

Most Probable Classification of New Instances

• MAP and MLE: Limitations
 – Problem so far: “find the most likely hypothesis given the data”
 – Sometimes we just want the best classification of a new instance x, given D

• A Solution Method
 – Find best (MAP) h, use it to classify
 – *This may not be optimal, though!*
 – Analogy
 • Estimating a distribution using the mode versus the integral
 • One finds the maximum, the other the area

• Refined Objective
 – Want to determine the *most probable classification*
 – Need to *combine* the prediction of all hypotheses
 – Predictions must be *weighted by their conditional probabilities*
 – Result: *Bayes Optimal Classifier (next time...)*
Terminology

• Introduction to Bayesian Learning
 – Probability foundations
 • Definitions: subjectivist, frequentist, logicist
 • (3) Kolmogorov axioms

• Bayes’s Theorem
 – Prior probability of an event
 – Joint probability of an event
 – Conditional (posterior) probability of an event

• Maximum A Posteriori (MAP) and Maximum Likelihood (ML) Hypotheses
 – MAP hypothesis: highest conditional probability given observations (data)
 – ML: highest likelihood of generating the observed data
 – ML estimation (MLE): estimating parameters to find ML hypothesis

• Bayesian Inference: Computing Conditional Probabilities (CPs) in A Model
• Bayesian Learning: Searching Model (Hypothesis) Space using CPs

Summary Points

• Introduction to Bayesian Learning
 – Framework: using probabilistic criteria to search \(H \)
 – Probability foundations
 • Definitions: subjectivist, objectivist; Bayesian, frequentist, logicist
 • Kolmogorov axioms

• Bayes’s Theorem
 – Definition of conditional (posterior) probability
 – Product rule

• Maximum A Posteriori (MAP) and Maximum Likelihood (ML) Hypotheses
 – Bayes’s Rule and MAP
 – Uniform priors: allow use of MLE to generate MAP hypotheses
 – Relation to version spaces, candidate elimination

• Next Week: 6.6-6.10, Mitchell; Chapter 14-15, Russell and Norvig; Roth
 – More Bayesian learning: MDL, BOC, Gibbs, Simple (Naïve) Bayes
 – Learning over text