Lecture 19 of 42

MAP and MLE continued, Minimum Description Length (MDL)

Wednesday, 28 February 2007

William H. Hsu
Department of Computing and Information Sciences, KSU
http://www.kddresearch.org

Readings for next class:
Chapter 5, Mitchell

Lecture Outline

• Read Sections 6.1-6.5, Mitchell
• Overview of Bayesian Learning
 – Framework: using probabilistic criteria to generate hypotheses of all kinds
 – Probability: foundations
• Bayes’s Theorem
 – Definition of conditional (posterior) probability
 – Ramifications of Bayes’s Theorem
 • Answering probabilistic queries
 • MAP hypotheses
• Generating Maximum A Posteriori (MAP) Hypotheses
• Generating Maximum Likelihood Hypotheses
• Next Week: Sections 6.6-6.13, Mitchell; Roth; Pearl and Verma
 – More Bayesian learning: MDL, BOC, Gibbs, Simple (Naïve) Bayes
 – Learning over text
Choosing Hypotheses

- **Bayes’s Theorem**
 \[P(h | D) = \frac{P(D | h) P(h)}{P(D)} \]

- **MAP Hypothesis**
 - Generally want most probable hypothesis given the training data
 - Define: \(\text{arg max}_{x \in \Omega} f(x) \) as the value of \(x \) in the sample space \(\Omega \) with the highest \(f(x) \)
 - Maximum a posteriori hypothesis, \(h_{MAP} \)
 \[h_{MAP} = \text{arg max}_{h \in H} P(h | D) = \text{arg max}_{h \in H} \frac{P(D | h) P(h)}{P(D)} \]

- **ML Hypothesis**
 - Assume that \(p(h_i) = p(h_j) \) for all pairs \(i, j \) (uniform priors, i.e., \(p_H \sim \text{Uniform} \))
 - Can further simplify and choose the maximum likelihood hypothesis, \(h_{ML} \)
 \[h_{ML} = \text{arg max}_{h_i \in H} P(D | h_i) \]

Bayes’s Theorem: Query Answering (QA)

- **Answering User Queries**
 - Suppose we want to perform intelligent inferences over a database \(DB \)
 - Scenario 1: \(DB \) contains records (instances), some "labeled" with answers
 - Scenario 2: \(DB \) contains probabilities (annotations) over propositions
 - QA: an application of probabilistic inference

- **QA Using Prior and Conditional Probabilities: Example**
 - Query: *Does patient have cancer or not?*
 - Suppose: patient takes a lab test and result comes back positive
 - Correct + result in only 98% of the cases in which disease is actually present
 - Correct - result in only 97% of the cases in which disease is not present
 - Only 0.008% of the entire population has this cancer
 - \(\alpha = P(\text{false negative for } H_0 = \text{Cancer}) = 0.02 \) (NB: for 1-point sample)
 - \(\beta = P(\text{false positive for } H_0 = \text{Cancer}) = 0.03 \) (NB: for 1-point sample)
 - \[P(\text{Cancer}) = 0.008, P(+ | \text{Cancer}) = 0.98 \]
 - \(P(\text{¬Cancer}) = 0.992, P(- | \text{¬Cancer}) = 0.97 \)
 - \(P(D) = 0.0076, P(D) \cdot P(\text{H}_A) = 0.0080 \Rightarrow \text{h}_{MAP} = H_A = \neg \text{Cancer} \)
Basic Formulas for Probabilities

- **Product Rule** (Alternative Statement of Bayes’s Theorem)
 \[P(A|B) = \frac{P(A \land B)}{P(B)} \]
 - Proof: requires axiomatic set theory, as does Bayes’s Theorem

- **Sum Rule**
 \[P(A \lor B) = P(A) + P(B) - P(A \land B) \]
 - Sketch of proof (immediate from axiomatic set theory)
 - Draw a Venn diagram of two sets denoting events A and B
 - Let \(A \lor B \) denote the event corresponding to \(A \lor B \)

- **Theorem of Total Probability**
 - Suppose events \(A_1, A_2, \ldots, A_n \) are mutually exclusive and exhaustive
 - Mutually exclusive: \(i \neq j \Rightarrow A_i \land A_j = \emptyset \)
 - Exhaustive: \(\sum P(A_i) = 1 \)
 - Then \(P(B) = \sum P(B|A_i)P(A_i) \)
 - Proof: follows from product rule and 3rd Kolmogorov axiom

MAP and ML Hypotheses: A Pattern Recognition Framework

- **Pattern Recognition Framework**
 - Automated speech recognition (ASR), automated image recognition
 - Diagnosis

- **Forward Problem**: One Step in ML Estimation
 - Given: model \(h \), observations (data) \(D \)
 - Estimate: \(P(D | h) \), the “probability that the model generated the data”

- **Backward Problem**: Pattern Recognition / Prediction Step
 - Given: model \(h \), observations \(D \)
 - Maximize: \(P(h(X) = x | h, D) \) for a new \(X \) (i.e., find best \(x \))

- **Forward-Backward (Learning) Problem**
 - Given: model space \(H \), data \(D \)
 - Find: \(h \in H \) such that \(P(h | D) \) is maximized (i.e., MAP hypothesis)

- **More Info**
 - Emphasis on a particular \(H \) (the space of hidden Markov models)
Bayesian Learning Example: Unbiased Coin [1]

- **Coin Flip**
 - Sample space: \(\Omega = \{\text{Head}, \text{Tail}\} \)
 - Scenario: given coin is either fair or has a 60% bias in favor of Head
 - \(h_1 \) = fair coin: \(P(\text{Head}) = 0.5 \)
 - \(h_2 \) = 60% bias towards Head: \(P(\text{Head}) = 0.6 \)
 - Objective: to decide between default (null) and alternative hypotheses
- **A Priori (aka Prior) Distribution on \(H \)**
 - \(P(h_1) = 0.75, P(h_2) = 0.25 \)
 - Reflects learning agent’s prior beliefs regarding \(H \)
 - Learning is revision of agent’s beliefs
- **Collection of Evidence**
 - First piece of evidence: \(d = \) a single coin toss, comes up Head
 - Q: What does the agent believe now?
 - A: Compute \(P(d) = P(d | h_1) P(h_1) + P(d | h_2) P(h_2) \)
 - \(P(\text{Head}) = 0.5 \cdot 0.75 + 0.6 \cdot 0.25 = 0.375 + 0.15 = 0.525 \)
 - This is the probability of the observation \(d = \text{Head} \)
- **Bayesian Learning**
 - Now apply Bayes’s Theorem
 - \(P(h_1 | d) = P(d | h_1) P(h_1) / P(d) = 0.375 / 0.525 = 0.714 \)
 - \(P(h_2 | d) = P(d | h_2) P(h_2) / P(d) = 0.15 / 0.525 = 0.286 \)
 - Belief has been revised downwards for \(h_1 \), upwards for \(h_2 \)
 - The agent still thinks that the fair coin is the more likely hypothesis
 - Suppose we were to use the ML approach (i.e., assume equal priors)
 - Belief is revised upwards from 0.5 for \(h_1 \)
 - Data then supports the bias coin better

Bayesian Learning Example: Unbiased Coin [2]

- **Bayesian Inference**: Compute \(P(d) = P(d | h_1) P(h_1) + P(d | h_2) P(h_2) \)
 - \(P(\text{Head}) = 0.5 \cdot 0.75 + 0.6 \cdot 0.25 = 0.375 + 0.15 = 0.525 \)
 - This is the probability of the observation \(d = \text{Head} \)
- **Bayesian Learning**
 - Now apply Bayes’s Theorem
 - \(P(h_1 | d) = P(d | h_1) P(h_1) / P(d) = 0.375 / 0.525 = 0.714 \)
 - \(P(h_2 | d) = P(d | h_2) P(h_2) / P(d) = 0.15 / 0.525 = 0.286 \)
 - Belief has been revised downwards for \(h_1 \), upwards for \(h_2 \)
 - The agent still thinks that the fair coin is the more likely hypothesis
 - Suppose we were to use the ML approach (i.e., assume equal priors)
 - Belief is revised upwards from 0.5 for \(h_1 \)
 - Data then supports the bias coin better
- **More Evidence**: Sequence \(D \) of 100 coins with 70 heads and 30 tails
 - \(P(D) = (0.5)^{70} \cdot (0.5)^{30} \cdot 0.75 + (0.6)^{70} \cdot (0.4)^{30} \cdot 0.25 \)
 - Now \(P(h_1 | d) \ll P(h_2 | d) \)
Brute Force MAP Hypothesis Learner

- **Intuitive Idea:** Produce Most Likely h Given Observed D

- **Algorithm Find-MAP-Hypothesis (D)**

 1. FOR each hypothesis $h \in H$

 Calculate the conditional (i.e., posterior) probability:

 \[P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)} \]

 2. RETURN the hypothesis h_{MAP} with the highest conditional probability

 \[h_{MAP} = \arg \max_{h \in H} P(h \mid D) \]

Relation to Concept Learning

- **Usual Concept Learning Task**

 - Instance space X
 - Hypothesis space H
 - Training examples D

- **Consider Find-S Algorithm**

 - Given: D

 - Return: most specific h in the version space $VS_{H,D}$

- **MAP and Concept Learning**

 - Bayes’s Rule: Application of Bayes’s Theorem

 - What would Bayes’s Rule produce as the MAP hypothesis?

- **Does Find-S Output A MAP Hypothesis?**
Bayesian Concept Learning and Version Spaces

- **Assumptions**
 - Fixed set of instances <x₁, x₂, ..., xₘ>
 - Let D denote the set of classifications: D = <c(x₁), c(x₂), ..., c(xₘ)>
- **Choose P(D | h)**
 - P(D | h) = 1 if h consistent with D (i.e., ∀ xᵢ, h(xᵢ) = c(xᵢ))
 - P(D | h) = 0 otherwise
- **Choose P(h) ~ Uniform**
 - Uniform distribution: P(h) = \frac{1}{|H|}
 - Uniform priors correspond to "no background knowledge" about h
 - Recall: maximum entropy
- **MAP Hypothesis**
 \[
P(h | D) = \begin{cases}
 \frac{1}{|\text{VS}_{h,D}|} & \text{if } h \text{ is consistent with } D \\
 0 & \text{otherwise}
\end{cases}
\]

Evolution of Posterior Probabilities

- **Start with Uniform Priors**
 - Equal probabilities assigned to each hypothesis
 - Maximum uncertainty (entropy), minimum prior information

 \[P(h) \rightarrow P(h | D₁) \rightarrow P(h | D₁, D₂)\]

- **Evidential Inference**
 - Introduce data (evidence) D₁: belief revision occurs
 - Learning agent revises conditional probability of inconsistent hypotheses to 0
 - Posterior probabilities for remaining h ∈ VS_{h,D} revised upward
 - Add more data (evidence) D₂: further belief revision
Characterizing Learning Algorithms by Equivalent MAP Learners

Inductive System

Training Examples D

Hypothesis Space H

Candidate Elimination Algorithm

Output hypotheses

Equivalent Bayesian Inference System

Training Examples D

Hypothesis Space H

Brute Force MAP Learner

Output hypotheses

Prior knowledge made explicit

Problem Definition

- Target function: any real-valued function f
- Training examples $<x_i, y_i>$ where y_i is noisy training value
 - $y_i = f(x_i) + e_i$
 - e_i is random variable (noise) i.i.d. ~ Normal (0, σ), aka Gaussian noise
- Objective: approximate f as closely as possible

Solution

- Maximum likelihood hypothesis h_{ML}
- Minimizes sum of squared errors (SSE)

$$h_{ML} = \arg \min_{h \in H} \sum_{i=1}^{m} (y_i - h(x_i))^2$$
Maximum Likelihood: Learning A Real-Valued Function [2]

- Derivation of Least Squares Solution
 - Assume noise is Gaussian (prior knowledge)
 - Max likelihood solution:
 \[h_{\text{ML}} = \arg \max_{h} p(D | h) \]
 \[= \arg \max_{h} \prod_{i=1}^{n} p(d_i | h) \]
 \[= \arg \max_{h} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(d_i - h(x_i))^2}{2\sigma^2}} \]

- Problem: Computing Exponents, Comparing Reals - Expensive!
- Solution: Maximize Log Prob

\[
 h_{\text{ML}} = \arg \max_{h} \sum_{i=1}^{n} \ln \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) - \frac{1}{2} \left(\frac{d_i - h(x_i)}{\sigma} \right)^2 \\
 = \arg \max_{h} \sum_{i=1}^{n} \left(\frac{d_i - h(x_i)}{\sigma} \right)^2 \\
 = \arg \min_{h} \sum_{i=1}^{n} (d_i - h(x_i))^2
\]

Learning to Predict Probabilities

- Application: Predicting Survival Probability from Patient Data
- Problem Definition
 - Given training examples \(<x_i, d_i> \), where \(d_i \in H = \{0, 1\} \)
 - Want to train neural network to output a probability given \(x_i \) (not a 0 or 1)
- Maximum Likelihood Estimator (MLE)
 - In this case can show:
 \[h_{\text{ML}} = \arg \max_{h} \sum_{i=1}^{n} [d_i \ln h(x_i) + (1-d_i) \ln(1-h(x_i))] \]
 - Weight update rule for a sigmoid unit
 \[
 \Delta w_{\text{start-layer, end-layer}} = \sum_{i=1}^{n} (d_i - h(x_i)) \cdot x_i_{\text{start-layer, end-layer}}
 \]
 \[
 w_{\text{start-layer, end-layer}} = w_{\text{start-layer, end-layer}} + \Delta w_{\text{start-layer, end-layer}}
 \]
Most Probable Classification of New Instances

- **MAP and MLE: Limitations**
 - Problem so far: “find the most likely hypothesis given the data”
 - Sometimes we just want the best classification of a new instance \(x \), given \(D \)

- **A Solution Method**
 - Find best (MAP) \(h \), use it to classify
 - *This may not be optimal, though!*
 - Analogy
 - Estimating a distribution using the *mode* versus the *integral*
 - One finds the maximum, the other the area

- **Refined Objective**
 - Want to determine the *most probable classification*
 - Need to *combine* the prediction of all hypotheses
 - Predictions must be *weighted by their conditional probabilities*
 - Result: *Bayes Optimal Classifier (next time…)*

Minimum Description Length (MDL) Principle: Occam’s Razor

- **Occam’s Razor**
 - Recall: prefer the shortest hypothesis - an inductive bias
 - Questions
 - Why short hypotheses as opposed to an arbitrary class of rare hypotheses?
 - What is special about minimum description length?
 - Answers
 - MDL approximates an *optimal coding strategy* for hypotheses
 - *In certain cases*, this coding strategy maximizes conditional probability
 - Issues
 - How exactly is “minimum length” being achieved (length of what)?
 - When and why can we use “MDL learning” for MAP hypothesis learning?
 - *What does “MDL learning” really entail (what does the principle buy us)?*

- **MDL Principle**
 - Prefer \(h \) that minimizes *coding length of model plus coding length of exceptions*
 - *Model*: encode \(h \) using a *coding scheme* \(C_1 \)
 - *Exceptions*: encode the *conditioned* data \(D \mid h \) using a *coding scheme* \(C_2 \)
MDL and Optimal Coding: Bayesian Information Criterion (BIC)

- **MDL Hypothesis**
 \[h_{\text{MDL}} = \arg \min_{h \in H} L_C(h) + L_{C_2}(D \mid h) \]
 - e.g., \(H \) = decision trees, \(D \) = labeled training data
 - \(L_C(h) \) = number of bits required to describe tree \(h \) under encoding \(C_1 \)
 - \(L_{C_2}(D \mid h) \) = number of bits required to describe \(D \) given \(h \) under encoding \(C_2 \)
 - NB: \(L_{C_2}(D \mid h) = 0 \) if all \(x \) classified perfectly by \(h \) (need only describe exceptions)
 - Hence \(h_{\text{MDL}} \) trades off tree size against training errors

- **Bayesian Information Criterion**
 \[BIC(h) = \log P(D \mid h) + \log P(h) \]
 - \(h_{\text{MAP}} = \arg \max_{h \in H} [\log P(D \mid h) \cdot P(h)] \)
 - Interesting fact from information theory: the optimal (shortest expected code length) code for an event with probability \(p \) is \(-\log(p)\) bits
 - Interpret \(h_{\text{MAP}} \) as total length of \(h \) and \(D \) given \(h \) under optimal code
 - \(\text{BIC} = \text{MDL} \) (i.e., \(\arg \max \) of BIC is \(\arg \min \) of MDL criterion)
 - Prefer hypothesis that minimizes \(\text{length}(h) + \text{length(misclassifications)} \)

Concluding Remarks on MDL

- **What Can We Conclude?**
 - Q: Does this prove once and for all that short hypotheses are best?
 - A: Not necessarily...
 - Only shows: if we find log-optimal representations for \(P(h) \) and \(P(D \mid h) \), then \(h_{\text{MAP}} = h_{\text{MDL}} \)
 - No reason to believe that \(h_{\text{MDL}} \) is preferable for arbitrary codings \(C_1, C_2 \)
 - Case in point: practical probabilistic knowledge bases
 - Elicitation of a full description of \(P(h) \) and \(P(D \mid h) \) is hard
 - Human implementor might prefer to specify relative probabilities

- **Information Theoretic Learning: Ideas**
 - Learning as compression
 - Abu-Mostafa: complexity of learning problems (in terms of minimal codings)
 - Wolff: computing (especially search) as compression
 - (Bayesian) model selection: searching \(H \) using probabilistic criteria
Bayesian Classification

- Framework
 - Find most probable classification (as opposed to MAP hypothesis)
 - $f : X \rightarrow V$ (domain = instance space, range = finite set of values)
 - Instances $x \in X$ can be described as a collection of features $x = (x_1, x_2, ..., x_n)$
 - Performance element: Bayesian classifier
 - Given: an example (e.g., Boolean-valued instances: $x_i \in B$)
 - Output: the most probable value $v_j \in V$ (NB: priors for x constant wrt v_{MAP})

- Parameter Estimation Issues
 - Estimating $P(v_j)$ is easy: for each value v_j count its frequency in $D = \{<x, f(x)>\}$
 - However, it is infeasible to estimate $P(x \mid x_1, x_2, ..., x_n \mid v_j)$: too many 0 values
 - In practice, need to make assumptions that allow us to estimate $P(x \mid D)$

Bayes Optimal Classifier (BOC)

- Intuitive Idea
 - $h_{MAP}(x)$ is not necessarily the most probable classification!
 - Example
 - Three possible hypotheses: $P(h_1 \mid D) = 0.4$, $P(h_2 \mid D) = 0.3$, $P(h_3 \mid D) = 0.3$
 - Suppose that for new instance x, $h_1(x) = +$, $h_2(x) = -$, $h_3(x) = -$
 - What is the most probable classification of x?
 - Bayes Optimal Classification (BOC)
 - $v^*_{BOC} = \arg \max_{v_j \in V} \sum_{h \in H} |P(v_j \mid h) \cdot P(h \mid D)|$
 - Example
 - $P(h_1 \mid D) = 0.4$, $P(- \mid h_1) = 0$, $P(+ \mid h_1) = 1$
 - $P(h_2 \mid D) = 0.3$, $P(- \mid h_2) = 1$, $P(+ \mid h_2) = 0$
 - $P(h_3 \mid D) = 0.3$, $P(- \mid h_3) = 1$, $P(+ \mid h_3) = 0$
 - Result: $v^*_{BOC} = \arg \max_{v_j \in V} \sum_{h \in H} |P(v_j \mid h) \cdot P(h \mid D)| = -$
Terminology

- Introduction to Bayesian Learning
 - Probability foundations
 - Definitions: subjectivist, frequentist, logicist
 - (3) Kolmogorov axioms
- Bayes's Theorem
 - Prior probability of an event
 - Joint probability of an event
 - Conditional (posterior) probability of an event
- Maximum A Posteriori (MAP) and Maximum Likelihood (ML) Hypotheses
 - MAP hypothesis: highest conditional probability given observations (data)
 - ML: highest likelihood of generating the observed data
 - ML estimation (MLE): estimating parameters to find ML hypothesis
- Bayesian Inference: Computing Conditional Probabilities (CPs) in A Model
- Bayesian Learning: Searching Model (Hypothesis) Space using CPs

Summary Points

- Introduction to Bayesian Learning
 - Framework: using probabilistic criteria to search H
 - Probability foundations
 - Definitions: subjectivist, objectivist; Bayesian, frequentist, logicist
 - Kolmogorov axioms
- Bayes’s Theorem
 - Definition of conditional (posterior) probability
 - Product rule
- Maximum A Posteriori (MAP) and Maximum Likelihood (ML) Hypotheses
 - Bayes’s Rule and MAP
 - Uniform priors: allow use of MLE to generate MAP hypotheses
 - Relation to version spaces, candidate elimination
- Next Week: 6.6-6.10, Mitchell; Chapter 14-15, Russell and Norvig; Roth
 - More Bayesian learning: MDL, BOC, Gibbs, Simple (Naïve) Bayes
 - Learning over text